Molecular Phylogenetics and Evolution 100 (2016) 254-267

Contents lists available at ScienceDirect

ELSEVIER

Molecular Phylogenetics and Evolution

journal homepage: www.elsevier.com/locate/ympev

Evaluating the phylogenetic signal limit from mitogenomes, slow evolving nuclear genes, and the concatenation approach. New insights into the Lacertini radiation using fast evolving nuclear genes and species trees

CrossMark

Joana Mendes ^{a,b}, D. James Harris ^a, Salvador Carranza ^b, Daniele Salvi ^{a,*}

^a CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal ^b Institute of Evolutionay Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain

ARTICLE INFO

Article history: Received 22 September 2015 Revised 19 March 2016 Accepted 11 April 2016 Available online 15 April 2016

Keywords: Lacertini radiation Hard polytomy Species tree Concatenation nuclear DNA Multilocus phylogeny

ABSTRACT

Estimating the phylogeny of lacertid lizards, and particularly the tribe Lacertini has been challenging, possibly due to the fast radiation of this group resulting in a hard polytomy. However this is still an open question, as concatenated data primarily from mitochondrial markers have been used so far whereas in a recent phylogeny based on a compilation of these data within a squamate supermatrix the basal polytomy seems to be resolved.

In this study, we estimate phylogenetic relationships between all Lacertini genera using for the first time DNA sequences from five fast evolving nuclear genes (*acm4*, *mc1r*, *pdc*, β *fib* and *reln*) and two mitochondrial genes (*nd4* and *12S*). We generated a total of 529 sequences from 88 species and used Maximum Likelihood and Bayesian Inference methods based on concatenated multilocus dataset as well as a coalescent-based species tree approach with the aim of (i) shedding light on the basal relationships of Lacertini (ii) assessing the monophyly of genera which were previously questioned, and (iii) discussing differences between estimates from this and previous studies based on different markers, and phylogenetic methods.

Results uncovered (i) a new phylogenetic clade formed by the monotypic genera *Archaeolacerta*, *Zootoca*, *Teira* and *Scelarcis*; and (ii) support for the monophyly of the *Algyroides* clade, with two sister species pairs represented by western (*A. marchi* and *A. fitzingeri*) and eastern (*A. nigropunctatus* and *A. moreoticus*) lineages. In both cases the members of these groups show peculiar morphology and very different geographical distributions, suggesting that they are relictual groups that were once diverse and widespread. They probably originated about 11–13 million years ago during early events of speciation in the tribe, and the split between their members is estimated to be only slightly older. This scenario may explain why mitochondrial markers (possibly saturated at higher divergence levels) or slower nuclear markers used in previous studies (likely lacking enough phylogenetic signal) failed to recover these relationships.

Finally, the phylogenetic position of most remaining genera was unresolved, corroborating the hypothesis of a hard polytomy in the Lacertini phylogeny due to a fast radiation. This is in agreement with all previous studies but in sharp contrast with a recent squamate megaphylogeny. We show that the supermatrix approach may provide high support for incorrect nodes that are not supported either by original sequence data or by new data from this study. This finding suggests caution when using megaphylogenies to integrate inter-generic relationships in comparative ecological and evolutionary studies.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The squamate reptile family Lacertidae is a clade of small-bodied lizards distributed in the Palaearctic and Africa. It comprises two sub-families, the Gallotiinae (2 genera, 13 species) and the Lacertinae (41 genera, 308 species), with the latter divided in two

tribes, Eremiadini (22 genera, 184 species) and Lacertini (19 genera, 124 species) (Arnold et al., 2007; Uetz and Hošek, 2015). As the most common lizard family in Europe, lacertids have been widely used as model species to answer questions on ecology and evolutionary biology, such as testing hypotheses on functional ecology (e.g. Vanhooydonck and Van Damme, 1999; Herrel et al., 2008; Baeckens et al., 2015), natural selection (e.g. Salvi et al., 2009; Heulin et al., 2011) or biogeography (e.g. Harris et al., 2002; Carranza et al., 2004; Poulakakis et al., 2005; Salvi et al., 2013). All such diverse assessments require an understanding of the evolutionary history of the group, so that comparisons can be drawn within a phylogenetic framework.

Over the last decades several morphological, bio-chemical and molecular studies have been conducted in order to infer the phylogeny of Lacertidae (Harris et al., 1998; Fu, 1998, 2000; Arnold et al., 2007; Mayer and Pavlicev, 2007; Hipsley et al., 2009; Pavlicev and Mayer, 2009: Cox et al., 2010). While the phylogenetic relationships within Gallotiinae and Eremiadini are relatively well known (e.g. Mayer and Pavlicev, 2007; Cox et al., 2010), the phylogeny of the tribe Lacertini is still mainly unresolved, with conflicting hypotheses and little corroboration between studies, particularly in the internal nodes. Indeed, although a few relationships within the tribe have been estimated with confidence and consistently across the previous studies, such as the case of the sister taxa relationships between the monotypic genera Scelarcis and Teira or between the genera of green lizards Lacerta and Timon, the phylogenetic position of the majority of taxa remains unknown. Moreover, the monophyly of the genus Algyroides was recently questioned (Pavlicev and Mayer, 2009). Since the lack of phylogenetic resolution shown by early studies may be due to insufficient data, Mayer and Pavlicev (2007) and Pavlicev and Mayer (2009) performed phylogenetic analyses including nuclear sequence data and an increasing taxon sampling. Their results yielded no improvements in the basal resolution of the phylogenetic tree and therefore discarded the hypothesis of a soft polytomy due to a methodological artefact. However, a possible alternative explanation for the lack of improvements in this last phylogenetic assessments may be that the nuclear data used in these two later studies consisted in two extremely slow-evolving genes (*c-mos* and *rag1*), possibly holding low information content to recover speciation nodes within Lacertini. On the other hand, a recent study from Pyron et al. (2013) with a wide focus on relationships between 4161 Squamata taxa, appears to have successfully solved the internal branching within Lacertini recovering high statistical support from internal to tip nodes. In this study, the authors used mainly the same two slow evolving nuclear markers employed by Mayer and Pavlicev and mitochondrial information from previous studies, and applied a non-parametric Shimodaira-Hasegawa-Like implementation of the approximate likelihood-ratio test (SHLaLRT) (Anisimova and Gascuel, 2006). Consequently, the current state of knowledge on Lacertini evolutionary history has two contrasting phylogenetic hypotheses drawn from concatenated dataset using mostly the same DNA sequences from mitochondrial and slow evolving nuclear markers.

All previous Lacertini phylogenies were based on the analysis of concatenated sequences from multiple genes. Such concatenation approach can prove problematic due to discordances between gene histories and the true evolutionary relationships among species, or in other words, between the gene trees and the species tree. While several processes can account for the discrepancy between gene trees and species trees (Maddison, 1997), recent studies demonstrate that the common approach of concatenating sequences from multiple genes can result in a well-supported but incorrect tree (Kubatko and Degnan, 2007). Bias caused by the concatenation approach can be produced, for instance, by the overuse of genetically linked and more variable mitochondrial genes, which regularly

drives the tree, hiding the information of less variable, usually nuclear, genes. Another major, yet frequently unconsidered, challenge is allele selection in the concatenation process. This substantially influences the phylogenetic results, as heterozygous alleles may have gene tree coalescences deeper than their species divergence, causing gene tree variations according to the chosen allele (Weisrock et al., 2012). Moreover, incongruence across gene tree topologies is an issue of concatenation: if topologies are not significantly different, species trees can be estimated through a concatenation approach. On the other hand, theoretical work has shown that the coalescent process can produce substantial variation in singlegene histories. When single-gene trees are significantly different and incongruent, as it seems the case for Lacertini, the concatenation approach leads to statistically inconsistent estimation of phylogenies (Degnan and Rosenberg, 2006; Kubatko and Degnan, 2007; McVay and Carstens, 2013). In all these cases, bootstraps can provide strong support for an incorrect phylogeny (Kubatko and Degnan, 2007). New methodologies of species tree estimation based on multilocus data from multiple individuals per species allow the reconciliation of a set of gene trees embedded in a shared species phylogeny. Thus, the species tree methods offer a promising tool to assess the reliability of previous phylogenies based on mainly mitochondrial dataset and to dissect the very different phylogenetic estimates of Lacertini based on the concatenation approach.

In this study we generate a comprehensive DNA sequence dataset for Lacertini, including all the tribe's genera, by sequencing multiple specimens per species, with additional taxa relative to previous studies, and including, for the first time, five fast evolving nuclear molecular markers to complement mitochondrial sequence data. In addition to the common approach of concatenating sequences from multiple genes, we implement a species tree approach to infer the phylogeny of Lacertini. Our main aim is to explore whether the addition of DNA sequences from fastevolving nuclear genes, combined with a multi-species coalescent approach can resolve or improve the inference of basal relationships of the tribe Lacertini, as well as provide more resolution on the relationships between genera and support for genera monophyly. We also compare the species tree with trees derived from the concatenation approach based on mitochondrial and nuclear genes from this study and previous ones. By doing this, we investigate the phylogenetic resolution of mitochondrial and nuclear markers, as well as comparing the phylogenetic inferences made by different phylogenetic methods.

2. Material and methods

2.1. Sampling

A total of 78 specimens from all the 19 genera of Lacertini were employed in the phylogenetic analyses. We used an average of two specimens per species, with a minimum of one and a maximum of five specimens. Ten additional samples, two for each of the species *Gallotia atlantica, G. stehlini, Psammodromus algirus* and *P. hispanicus* from the sub-family Gallotiinae, and *Atlantolacerta andreanskyi* from the tribe Eremiadini were used as outgroups following previous studies (e.g. Arnold et al., 2007; Harris et al., 1998). All samples were obtained from the collections of Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto (CIBIO-InBIO) and the Institute of Evolutionary Biology – CSIC-UPF (IBE). Information regarding the sample codes, species, sampling locality and GenBank accession numbers is given in Table 1.

2.2. DNA extraction, amplification and sequencing

Total genomic DNA was extracted from alcohol-preserved tail muscle following standard high-salt protocols (Sambrook et al.,

Table 1

Sample codes, species, sampling locality and sequences' GenBank accession numbers for the 88 samples used in this study.

Code	Species	Locality	12S	nd4	acm4	βfib	mc1r	pdc	reln
330	Algyroides fitzingeri	Cagliari, Sardinia, Italy	KX080559	KX081002	KX080921	KX080640	KX080711	KX080793	KX080858
701	Algyroides fitzingeri	Restonica, Corsica, France	KX080560	KX081003	KX080922	KX080641	KX080712	KX080794	KX080859
4029	Algyroides fitzingeri	Mt. Albo, Sardinia, Italy	KX080561	KX081004	KX080923	KX080642	KX080713	KX080795	KX080860
1768	Algyroides marchi	La Hueta's waterfall, Spain	KX080563	KX081006	KX080925	KX080644	KX080715	KX080797	KX080862
1859	Algyroides marchi	El Toril, Spain Buento de las Herrorías, Spain	KX080564	KX081007	KX080926	KX080645	KX080716	KX080798	KXU8U863
1009 458b	Algyroides mareaticus	Kalivia Greece	KX080562	KX081005	KX080924 KX080917	KX080643	KX080714 KX080707	KA080790	KX080855
4324	Algyroides moreoticus	Roitika Patras, Greece	KX080555	KX081000	KX080917	KX080057	KX080707	KX080792	KX080855
4325	Algyroides moreoticus	Kalavryta, Greece	KX080556		KX080918	KX080638	KX080708	KX080790	
4332	Algyroides moreoticus	Zarouchla, Greece	KX080557	KX081001	KX080919	KX080639	KX080709	KX080791	KX080856
416	Algyroides	Metsovo, Greece	KX080552	KX080997	KX080914	KX080634	KX080704	KX080787	
	nigropunctatus								
3237	Algyroides	Vitsa, Greece	KX080550	KX080995	KX080913		KX080702	KX080786	
3246	Algyroides	Voidomatis Greece	KX080551	KX080996		KX080633	KX080703		
5240	nigronunctatus	Voldomatis, diecee	100000001	10000330		100000000	10,0007.05		
15438	Algyroides	Vanganel, Slovenia	KX080553	KX080998	KX080915	KX080635	KX080705	KX080788	
	nigropunctatus	-							
15441	Algyroides	Vanganel, Slovenia	KX080554	KX080999	KX080916	KX080636	KX080706	KX080789	
	nigropunctatus								
\$10390	Anatololacerta	Çamiyayla, Turkey	KX080617	KX081055	KX080981	KX080690			
12022	aanjorai Apathya cappadocica	Cökcup Turkov	12000610	KV091057	12000000		VV080772	120000042	22080000
S10388	Apathya cappadocica	Fastern Turkey	KX080618	KX081057	KX080983	KX080912	KX080772	KX080843	KX080500
RE1	Archaeolacerta	Restonica, Corsica, France	KX080585	KX081026	KX080947	KX080659	KX080737	KX080814	101000000
	bedriagae								
RE2	Archaeolacerta	Restonica, Corsica, France	KX080586	KX081027	KX080948	KX080660	KX080738	KX080815	KX080880
	bedriagae								
5015	Atlantolacerta	Tizin Tichka, Morocco	JX462057.1	JX462200.1	JX461988.1	KX080693	JX461804.1	JX461634.1	
ENER	andreanskyi	Tizin Tichka Morocco	IV 46205 4 1	IV 462106 1	IV 462000 1	122020604	IV/C101C 1	IV 4616441	
5058	andreanskyi	П2ПГПСПКА, МОГОССО	JA402054.1	JA402190.1	JA402000.1	KA060094	JA401810.1	JA401044.1	
S10353	Dalmatolacerta	Bosnia and Herzegovina	KX080610	KX081049	KX080973	KX080684	KX080763	KX080836	
	oxycephala								
S10354	Dalmatolacerta	Bosnia and Herzegovina	KX080609	KX081048	KX080972	KX080683	KX080762	KX080835	
	oxycephala								
7802	Darevskia derjugini	Abastumani, Georgia	KX080583		KX080945	KX080657	KX080735	KX080813	KX080878
7803	Darevskia derjugini	Abastumani, Georgia	KX080584	10001005	KX080946	KX080658	KX080736	10/000012	KX080879
4985	Darevskia raddei	Pla, Georgia Canzasar Nagorno-Karabakh	KX080582	KX081025 KX081024	KX080944 KX080943	KX080656	KX080734 KX080733	KX080812 KX080811	KX080877
10120	Durevskiu ruuuei	Republic	KX080381	KA001024	KX080343	KX080033	KX000755	10000011	KX080877
3	Dinarolacerta	Đebeza, Prokletije Mountains,		KX081012	KX080930	KX080909	KX080721	KX080803	KX080868
	montenegrina	Montenegro							
18	Dinarolacerta	Đebeza, Prokletije Mountains,	KX080566	KX081009	KX080927	KX080646	KX080718	KX080800	KX080865
	montenegrina	Montenegro							
19	Dinarolacerta	Đebeza, Prokletije Mountains,	KX080567	KX081010	KX080928	KX080907	KX080719	KX080801	KX080866
20	Dinarolacerta	Debeza Prokletije Mountains	KX080565	KX081008		KX080906	KX080717	KX080799	KX080864
20	montenegrina	Montenegro	10000303	10001000		10000000	10,000717	10000755	101000004
22	Dinarolacerta	Đebeza, Prokletije Mountains,	KX080568	KX081011	KX080929	KX080908	KX080720	KX080802	KX080867
	montenegrina	Montenegro							
9	Dinarolacerta	Međuvršje, Montenegro	KX080570	KX081014	KX080932	KX080647	KX080723	KX080804	KX080870
10	mosorensis		10/000571		10/000000	1220000040	10000724	10200005	
13	Dinarolacerta	weauvrsje, wontenegro	KXU8U571		кх080933	кли80648	кх080/24	KXU80805	
15	Dinarolacerta	Virak Montenegro	KX080569	KX081013	KX080931		KX080722		KX080869
15	mosorensis	virux, montenegro	101000303	101001015	101000331		101000722		101000000
AM1	Dinarolacerta	Lovćen Mountains, Montenegro	KX080572	KX081015	KX080934	KX080649			
	mosorensis								
1244	Gallotia atlantica	Nazaret, Lanzarote, Spain	KX080625	KX081062	KX080988	KX080695	KX080778	KX080847	KX080902
1341	Gallotia atlantica	Yaiza, Lanzarote, Spain	KX080626	KX081063	KX080989	KX080696	KX080779	KX080848	
1350	Gallotia stehlini	San Andrés, Gran Canaria, Spain	KX080627	KX081064	KX080990	KX080697	KX080780	KX080849	1/2/00/00/02
1412 456b	Gallotia steniini Hellopolasorta graeca	Aldea Blanca, Gran Canaria, Spain	KX080628	KX081065	KX080991	KX080698	KX080781	KX080850	KX080903
456c	Hellenolacerta graeca	Agia Kyriaki, Greece	KX080613		KX080975	KX080687	KX080766	KXU8U830	KX080890
S10387	Hellenolacerta graeca	Greece	KX080611	KX081050	KX080974	KX080685	KX080764	KX080833	KX080895
62	Iberolacerta cvreni	Navacerrada, Spain	KX080578	KX081021	KX080940	KX080651	KX080730	KX080809	KX080874
MON1	Iberolacerta cyreni	Rascafría, Spain	KX080577	KX081020	KX080939	KX080652	KX080729		KX080873
4282	Iberolacerta monticola	Sosas de Laciana, Spain	KX080579	KX081022	KX080941	KX080653	KX080731		KX080875
4283	Iberolacerta monticola	Sosas de Laciana, Spain	KX080580	KX081023	KX080942	KX080654	KX080732	KX080810	KX080876
5143	Iranolacerta brandtii	Estahan, Iran	KX080623	KX081060	KX080986		KX080776	10/0000 10	10000001
5146	iranoiacerta brandtii	Ardabil, Iran Studland, United Kingdom	KXU80624	KXU81061	KXU8U987	KX080672	KXU8U/77	KXU8U846	KXU8U901
S10397	Lacerta agilis	Aln Snain	KX080601	KX081039	KXU8U963	KX080674	KX080753	KX080829	ιλυουοδό
510101		· P, opa		101001040					

J. Mendes et al./Molecular Phylogenetics and Evolution 100 (2016) 254-267

Table 1 (continued)

Code	Species	Locality	12S	nd4	acm4	βfib	mc1r	pdc	reln
15306	Lacerta bileneata	Bosco Magnano, Italy	KX080602	KX081041	KX080964	KX080675	KX080754		
15307	Lacerta bileneata	Pantana, Italy	KX080603	KX081042	KX080965	KX080676	KX080755		KX080889
15308	Lacerta bileneata	Abruzzo, Italy	KX080604	KX081043	KX080966	KX080677	KX080756		KX080890
1912	Lacerta schreiberi	Garganta de las Lancha, Spain	KX080598	KX081037	KX080960	KX080671	KX080750	KX080827	KX080887
3866	Lacerta schreiberi	Tanes, Spain	KX080599	KX081038	KX080961	KX080672	KX080751	KX080828	
445	Lacerta trilineata	Agios Vasilios, Greece		KX081044	KX080968	KX080679	KX080758	KX080831	
446	Lacerta trilineata	Agios Vasilios, Greece	KX080606	KX081045	KX080969	KX080680	KX080759	KX080832	KX080892
447	Lacerta trilineata	Dorio, Greece	KX080607	KX081046	KX080970	KX080681	KX080760	KX080833	KX080893
451	Lacerta trilineata	Koutsouroumpas, Greece	KX080608	KX081047	KX080971	KX080682	KX080761	KX080834	KX080894
S10399	Lacerta trilineata	Golbasi, Turkey	KX080605		KX080967	KX080678	KX080757		KX080891
S10398	Parvilacerta parva	Çorum, Turkey	KX080616	KX081054	KX080980	KX080911	KX080770	KX080841	
JamJB	Phoenicolacerta kulzeri	Barouk, Jordan	KX080622	KX081059	KX080985	KX080692	KX080775	KX080845	
Petra	Phoenicolacerta	Petra, Jordan	KX080621		KX080984	KX080691	KX080774		
	kulzeri								
S10389	Phoenicolacerta kulzeri	Ainata, Lebanon	KX080620	KX081058			KX080773	KX080844	
509	Podarcis muralis	Florence, Italy	KX080575	KX081018	KX080937	KX080650	KX080727	KX080807	KX080872
5937	Podarcis muralis	Sierra delle Ciavole, Italy	KX080576	KX081019	KX080938		KX080728	KX080808	
771	Podarcis sicula	Vulcano Island, Sicily, Italy	KX080573	KX081016	KX080935		KX080725		KX080871
9103	Podarcis sicula	Pizzo, Italy	KX080574	KX081017	KX080936	KX080701	KX080726	KX080806	
2347	Psammodromus algirus	Iminifri, Morocco	KX080631	KX081068		KX080699	KX080784	KX080853	
2356	Psammodromus	Azrou, Morocco	KX080632	KX081069	KX080994	KX080700	KX080785	KX080854	
1723	Psammodromus	Jaén, Spain	KX080629	KX081066	KX080992		KX080782	KX080851	KX080904
	hispanicus								
1850	Psammodromus	Jaén, Spain	KX080630	KX081067	KX080993		KX080783	KX080852	KX080905
	hispanicus								
139	Scelarcis perspicillata	Sidi Yahya Ousaad, Morocco	KX080591	KX081031	KX080953	KX080664	KX080743	KX080820	
3456	Scelarcis perspicillata	Taza, Morocco	KX080592		KX080954	KX080665	KX080744	KX080821	
S9282	Takydromus seylineatus	Gangaw, Myanmar	KX080614	KX081051	KX080977	KX080688	KX080767		KX080897
\$9294	Takydromus	Nat Ma Taung National Park	KX080615	KX081052	KX080978	KX080689	KX080768		KX080898
55254	sexlineatus	Myanmar	10000015	10001052	101000570	101000005	10000700		10000000
S10392	Takydromus	Okinawa, Japan		KX081053	KX080979		KX080769	KX080840	
5222	Toira dugosii	Santa Maria Azores Portugal	KX080505	KX081034	KX080057	KX080668	KX080747	KX080834	
5222	Teira dugesii	Santa Maria, Azoros, Portugal	KX080595	KX081034	KX080957	KX080008	KX080747	KX080824	
5223	Teira dugesii	Santa Maria, Azoros, Portugal	KX080590	KX081033	KX080958	KX080009	KX080748	KX080823	
JZZ4 4012	Timon lanidus	Vairão Dortugal	KX080397	KX081030	KX080959	KX080070	KX080749	KX080820	12000000
4846	Timon lenidus	Burgos Spain	KXU80209	KX081030	KX080931	KX080002	KX080741	KX080818	KXU8U881
1/	Timon tangitanus	Morocco	KY080590	KY081030	KX080932	KY080661	KX080742	KY080816	KY080881
27	Timon tangitanus	Cirque de lafar Morocco	KX080587	KX081028	KX080949	KX080001	KX080739	KX080817	KX080887
15305	Zootoca vivinara	Russia	KX080588	KX081029	KX080950	KX080510	KX080740	KX080817	KX080882
700	Zootoca vivipara	Raikal Lake Russia	KX080594	KX081033	KX080955	KX080666	KX080740	KX080823	KX080885
200	200100u minpunu	Sama Lake, Russia		131001052	131000333	131000000		131000022	131000000

1989). For a reduced number of samples for which the saline extraction failed we used the Qiagen DNeasy[®] Blood & Tissue extraction kit, following the manufacture's protocol.

Fragments from the mitochondrial DNA genes NADH Dehydrogenase 4 plus the flanking tRNAs Histidine and Serine (*nd4*), and of the ribosomal 12SrRNA gene (*12S*), and the nuclear genes Acetylcholinergic Receptor M4 (*acm4*), Melanocortin 1 Receptor (*mc1r*), Phosducin (*pdc*), intron 7 of β -fibrinogen (β fib) and intron 61 of Reelin (*reln*) were amplified through standard Polymerase Chain Reaction (PCR). We selected these mitochondrial and nuclear markers because they have been shown to be highly variable in previous studies on Lacertinae (e.g. Pinho et al., 2008; Salvi et al., 2010, 2014; Barata et al., 2012). Primers and PCR protocols used for the amplification of the molecular markers are reported in Table 2. Purification and sequencing of PCR products were carried out by a commercial sequencing company (Macrogen Europe: www.macrogen.com), using the same primers employed for amplification.

2.3. Phylogenetic analyses

Sequences were aligned using the MUSCLE algorithm (Edgar, 2004) in Geneious (Biomatters Ltd.) with default settings.

Ambiguous and poorly aligned positions were removed by Gblocks v.0.91b using default settings (Castresana, 2000).

Haplotype reconstruction for nuclear gene fragments was performed in PHASE v. 2.1 (Stephens et al., 2001; Stephens and Scheet, 2005). Input files were created in SEQPHASE (Flot, 2010; available at http://seqphase.mpg.de/seqphase/). Haplotypes defined from heterozygous insertion-deletions were manually phased and were incorporated as known phases to improve haplotype determination following Flot et al. (2006). Phase was run three times to assure consistency, with a phase probability threshold of 0.7 and the remaining settings by default.

Recombination detection was performed in RDP v.3.44 (Martin et al., 2010) using five different algorithms, RDP (Martin and Rybicki, 2000), GENECONV (Padidam et al., 1999), MaxChi (Smith, 1992), BootScan (Martin et al., 2005) and SiScan (Gibbs et al., 2000) with default options and applying the auto-masking tool to remove the outgroup and very divergent or very similar sequences, in order to increase statistical power (Martin et al., 2010).

Phylogenetic relationships among the Lacertidae species were inferred by Maximum Likelihood (ML), Bayesian Inference (BI) and the Bayesian species tree approach based on the multi-locus coalescent. For the ML and BI analyses, unphased sequence data

Table	
Table	: Z

Primers and PCR protocols used for the amplification of the molecular markers used in this study.

Gene	Primer	Sequence (5'-3')	Source	PCR conditions (°C (s) \times number of circles)
nd4	ND4 Leu	CAC CTA TGA CTA CCA AAA GCT CAT GTA GAA GC CAT TAC TTT TAC TTG GAA TTT GCA CCA	Arévalo et al. (1994)	94(180), [94(30), 50(30), 72(60) × 35], 72(600)
12S	12Sa 12Sb	CTG GGA TTA GAT ACC CCA CTA T GAG GGT GAC GGG GCG GTG TGT	Kocher et al. (1989)	94(180), [94(30), 50(30), 72(45) × 35], 72(600)
acm4	TgF TgR	CAA GCCTGA GAG CAA RAA GG ACY TGA CTC CTG GCA ATG CT	Gamble et al. (2008)	92(180), [92(30), 62 \downarrow 0.5(30), 72(45) × 20], [92(30), 50(30), 72(45) × 15], 72(600)
βfib	BF8 BfibR	CAC CAC CGT CTT CTT TGG AAC ACT G CAG GGA GAG CTA CTT TTG ATT AGA C	Pinho et al. (2008)	92(180), [92(30), 62 \downarrow 0.5(30), 72(60) × 20], [92(30), 50(30), 72(60) × 15], 72(600)
mc1r	MC1R-F MC1R-R	GGC NGC CAT YGT CAA GAA CCG GAA CC CTC CGR AAG GCR TAG ATG ATG GGG TCC AC	Pinho et al. (2009)	92(180), [92(30), 62↓0.5(30), 72(60) × 25], [92(30), 50(30), 72(60) × 15], 72(600)
pdc	PHOF2 PHOR1	AGA TGA GCA TGC AGG AGT ATG A TCC ACA TCC ACA GCA AAA AAC TCC T	Bauer et al. (2007)	92(180), [92(30), 58(30), 72(60) × 35], 72(600)
reln	62F 63R	GAG TMA CTG AAA TAA ACT GGG AAA C GCC ATG TAA TYC CAT TAT TTA CAC TG	Pinho et al. (2009)	92(180), [92(30), 57(30), 72(60) × 35], 72(600)

were concatenated in three different matrices: mitochondrial DNA (mtDNA), nuclear DNA (nucDNA) and mitochondrial-nuclear DNA (mt-nucDNA) data. Within each matrix the data was partitioned by gene fragment (seven mt-nucDNA partitions).

ML analyses were performed in RAxML GUI v.1.1.3 (Silvestro and Michalak, 2012), a graphical front-end for RaxML v.7.4.2 (Stamatakis, 2006). ML searches included 10 random addition replicates and 1000 nonparametric bootstrap replicates, applying the general time-reversible model with gamma model of rate heterogeneity (GTRGAMMA) for each of the three concatenated datasets.

BI analyses were performed in BEAST v.1.8.0 (Drummond et al., 2012) for each concatenated dataset. The best model of nucleotide substitution for each gene among 40 different models was assessed in jModelTest v.2.1.3 (Posada, 2008) under the corrected Akaike Information Criterion (AICc) (Table 3). We built the input file with evolutionary models, tree priors and Markov Chain Monte Carlo (MCMC) options using the BEAUTi utility included in the BEAST package. Models and prior specifications applied were as follows (otherwise by default): we implemented the K80 model in BEAST by specifying the HKY model with "base frequencies" set to "All Equal"; the tree model of all gene partitions was linked, while nucleotide substitution and clock models were unlinked; Relaxed Uncorrelated Lognormal Clock set for all genes, Yule process of speciation as tree prior, random starting tree, alpha Uniform (0, 10), ucld.mean Uniform, and operator kappa (2.0). The use of the Yule process of speciation prior requires only one sequence per species, whereas our concatenated alignments contain multiple samples per species. Therefore, to investigate the sensitivity of our estimates to the choice of tree prior, we performed an additional run for each dataset, applying the same settings as above but using only one representative sequence for each species. BEAST was run three times,

Table 3

Number of sequences for each gene, length of the gene fragments, models of sequence evolution for unphased and phased data as selected by jModelTest according to the AICc and number of variable positions calculated in MEGA 5 for the dataset with and without outgroup.

Gene	No. seq.	Length (bp)	Model unphased data	Model phased data	Variable positions Ingroup	Variable positions with outgroup
12S	85	362	GTR + I + G		125	136
nd4	77	726	TrN + I + G		417	433
acm4	84	379	HKY + I + G	K80 + G	73	90
β-fib	76	327	HKY	JC	143	175
mc1r	86	615	HKY + I + G	HKY + I + G	125	138
pdc	71	444	K80 + I + G	K80 + G	99	113
reln	51	681	HKY + G	HKY + G	265	318

with 100 million generations, sampling every 10,000 generations. We used Tracer v 1.5 (Rambaut and Drummond, 2007) to check the runs for convergence (burn-in = 10%) and to ensure that all effective sample sizes parameters (ESS) were higher than 200, as recommended in the manual. Runs were combined with LogCombiner and afterwards TreeAnnotator (both included in the BEAST package) was used to summarize the trees in a consensus tree representing the posterior distribution.

The species tree was inferred using the ^{*}BEAST extension of the BEAST software. ^{*}BEAST co-estimates a species tree along with the gene trees and effective population sizes of the species in a single Bayesian Markov Chain Monte Carlo analysis. For this analysis we used the phased alignments of the nuclear genes and their relative models of nucleotide evolution calculated in jModelTest, under the AICc (Table 3). Nucleotide substitution, clock and tree models were unlinked, with the exception of the tree model of the mitochondrial genes 12S and nd4 because these genes are genetically linked. The remaining settings were the same as in the BEAST analysis of the concatenated mt-nucDNA data. We used the available estimated rate of evolution of 12S of lacertid lizards (Carranza and Arnold, 2012) to estimate cladogenetic events within Lacertini. Mean substitution rates and their standard errors for the same 12S gene regions used in the present study were extracted from a fullycalibrated phylogeny (nine calibration points) including the lacertid lizard Canary Islands radiation of *Gallotia* sp. (Cox et al., 2010) and the Balearic islands Podarcis pityusensis and P. lilfordi (Brown et al., 2008). For a full account on the specific calibration points and methods used to infer the substitution rate of Lacertid lizard used in the present study please see Carranza and Arnold (2012). Absolute divergence times were estimated in ^{*}BEAST by setting a normal distribution prior for the ucld.mean parameter of the 12S gene fragment with the following parameters: initial: 0.00553, mean: 0.00553, stdev: 0.00128. *BEAST was run five times with 400 million generations, sampling every 40,000 generations. Runs were performed in the CIPRES Science Gateway V. 3.3 (Miller et al., 2010, at http://www.phylo.org/). Convergence and ESS of the runs were verified in Tracer v 1.5. Runs were combined with LogCombiner and the maximum clade credibility tree was calculated in TreeAnnotator. All trees were visualized in FIGTREE v1.4 (available at http://tree.bio.ed.ac.uk/software/figtree/).

2.4. Topology tests

In order to compare our phylogenetic hypothesis with previous phylogenies, we performed topological tests between our ML tree based on the concatenated mt-nucDNA dataset and ML trees

Table 4

Age, in million years (Mya), and node 95% highest posterior density (HPD) intervals for the major supported nodes in the species tree. Letters represent the nodes in the species tree (Fig. 4).

Node	Split/clade	Age (Mya)	Height 95% HPD (Mya)
a	Lacertinae – Gallotinae	33.22	11.77-51.28
b	Lacertini – Eremiadini	17.85	10.68-25.7
с	Lacertini	15.03	9.42-21.58
d	Algyroides – Dinarolacerta	11.29	6.98-16.48
e	A. fitzingeri – A. marchi	8.59	4.95-12.65
f	Dinarolacerta genus	2.9	1.35-4.76
g	Podarcis genus	6.85	3.79-10.42
h	Iberolacerta genus	4.32	2.09-6.85
i	Archaeolacerta, Zootoca, Teira,	12.85	7.95-18.66
	Scelarcis		
j	Teira – Scelarcis	5.81	3.17-9.02
k	Lacerta genus	7.88	4.74-11.65
1	Timon genus	3.51	1.58-5.76
m	Takydromus genus	8.45	4.75-12.75
n	Darevskia – Iranolacerta	10.25	5.93-15.34
0	Darevskia genus	3.18	1.35-5.27
р	Parvilacerta – Anatololacerta	10.91	6.15-16.08
q	Gallotia – Psammodromus	14.92	8.92-22.38
r	Gallotia genus	10.8	5.74-16.55
S	Psammodromus genus	11.67	6.56-17.64

obtained by previous studies. First, we inspected supported nodes recovered in previous studies that conflicted with our results and then we enforced these nodes in our tree topology. In order to assess the relative contribution on topological comparisons of nodes with different levels of support we generated three constrained topologies enforcing all nodes obtained in previous studies with bootstrap support values equal or higher than (i) 95 or (ii) 90 or (iii) 85. The trees with topological constrains were generated in Mesquite version 3.03 (Maddison and Maddison, 2015). Constrained clades are presented in Table 5. Per-site log likelihood values were estimated in RAxMLGUI v.1.1.3. The constrained trees were compared with our best ML tree using the Shimodaira-Hasegawa (SH) and the approximately unbiased (AU) tests (Shimodaira and Hasegawa, 1999; Shimodaira, 2002, respectively), as implemented in CONSEL (Shimodaira and Hasegawa, 2001) to determine if any of the alternatives could be rejected at the 0.05 level.

Table 5

Results of topological tests using three sets of constrains based on relationships recovered in Pyron et al. (2013) with a node support \ge 85 or \ge 90 or \ge 95. The enforced relationships and *p*-value results of Shimodaira–Hasegawa (SH) and Approximately Unbiased (AU) tests are reported.

Node support level	Enforced relationships	SH	AU
95	1. (Takydromus, Zootoca) 2. (Dalmatolacerta, Hellenolacerta)	0.018	0.002
90	 (Takydromus, Zootoca) (Dalmatolacerta, Hellenolacerta) ((Timon, Lacerta) (Podarcis (Teira, Scelarcis))) (Archaeolacerta, Apathya) (Algyroides marchi, A. fitzingeri) Dinarolacerta) 	3e-004	6e-008
85	 (Takydromus, Zootoca) (Dalmatolacerta, Hellenolacerta) ((Timon, Lacerta) (Podarcis (Teira, Scelarcis))) (Archaeolacerta, Apathya) (Algyroides marchi, A. fitzingeri) Dinarolacerta) (Dalmatolacerta, Hellenolacerta, Archae- olacerta, Apathya, Iberolacerta, Parvilac- erta, Anatololacerta, Algyroides, Iranolacerta, Darevskia) 	3e-004	8e-006

3. Results

A total of 530 sequences were obtained and used in the phylogenetic analyses, among which 520 sequences were newly generated for this study and 10 sequences of the species Atlantolacerta andreanskyi were retrieved from GenBank. The percentage of missing data was 3% for 12S, 12.5% for nd4, 4.5% for acm4, 15% for βfib, 2% for *mc1r*, 19% for *pdc* and 42% for *reln*. The percentage of missing nucleotides is very low in the genes 12S, nd4 and reln, with 1-3 samples having 0.05% of the total length of the alignment missing, and higher for the genes *acm4*, *bfib* and *mc1r*, with an average of 10% of the length missing in a maximum of 6 specimens. The number of sequences, multiple sequence alignments length, models of sequence evolution and number of variable positions are reported for each gene in Table 3. Multiple sequences alignments of protein coding genes (nd4, acm4, mc1r and pdc) did not require gap positions and their translation into amino acid sequences contained no stop codons. Alignments of both the intronic regions *βfib* and reln showed high sequence length polymorphisms. The recombination tests applied in RDP did not find statistically significant evidence for recombination in any of the nuclear genes. All sequences were deposited in GenBank (Table 1).

3.1. Phylogenetic relationships within Lacertidae

Phylogenetic results from the concatenation analyses and species tree present three consistent traits: (i) in the Bayesian trees based on the concatenated datasets and in the species tree, in which the outgroup is not enforced, the subfamilies Gallotiinae and Lacertinae are reciprocally monophyletic sister taxa (Figs. 1-4); (ii) the Lacertini tribe presents a basal polytomy pattern with a lack of support for basal nodes in all trees; (iii) all genera are monophyletic with high support (Bayesian Posterior Probabilities (BPP) \ge 95; Bootstrap Support (BS) \ge 70), except Algyroides, whose monophyly is recovered in all the trees but with low node support, except in the BI tree based on the concatenated mtDNA topology where Algyroides is paraphyletic relative to Dinarolacerta (Fig. 1, in orange). Supported sister genera relationships recovered by all analyses with high support include Scelarcis perspicillata and *Teira dugesii* (Figs. 1–4, in green¹; BPP > 0.98, BS = 100). The sister genus relationships between Darevskia and Iranolacerta is recovered in all the trees and is statistically well supported (Figs. 1, 3 and 4, in pink; BPP > 0.94, BS > 83) except in the tree based on the concatenated nucDNA (Fig. 2). Algyroides and Dinarolacerta are also recovered as well supported sister taxa in the tree based on the concatenated mt-nucDNA and the species tree analyses (Figs. 3 and 4, in orange; BPP > 0.97, BS > 98), are recovered as sister taxa but not supported in the nucDNA tree (Fig. 2) and Dinarolacerta is nested within Algyroides in the BI tree based on the concatenated mtDNA (Fig. 1). Some clade relationships are recovered when using only one type of molecular markers: when using mtDNA data we recovered the relationships between Anatololacerta and Parvilacerta in the BI tree based on the concatenated dataset and species tree (Figs. 1, 3 and 4, in brown; BPP > 0.96) and the green lizard genera Lacerta and Timon in the trees based on the concatenated datasets (Figs. 1 and 3, in blue; BPP > 0.98, BS > 74); when using the nucDNA data we recovered a well-supported clade containing the taxa Scelarcis perspicillata. Teira dugesii. Archaeolacerta bedriagae and Zootoca vivipara (Figs. 2-4, in green; BPP = 1, BS > 87). The position of all the other genera, Podarcis, Hellenolacerta, Phoenicolacerta, Takydromus, Iberolacerta, Dalmatolacerta and Apathya is neither resolved nor consistent across the trees.

¹ For interpretation of color in Figs. 1–4, the reader is referred to the web version of this article.

Fig. 1. Phylogenetic relationships of Lacertini based on Bayesian analyses of concatenated mitochondrial DNA sequences (*12S* and *nd4*). Bayesian posterior probabilities (BPP) ≥ 0.90 are reported above nodes; bootstrap values from Maximum-Likelihood analyses (BS) ≥ 90 are reported below nodes. Within species, black dots represent BPP of 1 and BS of 100 in both BI and ML analyses; grey part of the dots represent BPP of $0.9 \ge 0.99$ and BS of $70 \ge 99$, respectively.

Fig. 2. Phylogenetic relationships of Lacertini based on Bayesian analyses of concatenated nuclear DNA sequences (*acm4*, β *fib*, *mc1r*, *pdc* and *reln*). Bayesian posterior probabilities ≥ 0.90 are reported above nodes; bootstrap values from Maximum-Likelihood analyses ≥ 0.90 are reported below nodes. Within species, black dots represent BPP of 1 and BS of 100 in both BI and ML analyses; grey part of the dots represent BPP of 0.9 ≥ 0.99 and BS of 70 ≥ 99 , respectively and white part represents no support.

Fig. 3. Phylogenetic relationships of Lacertini based on concatenated mitochondrial (*12S* and *nd4*) and nuclear (*acm4*, β *fib*, *mc1r*, *pdc* and *reln*) DNA sequences. Bayesian posterior probabilities ≥ 0.90 are reported above nodes; bootstrap values from Maximum-Likelihood analyses ≥ 0.90 are reported below nodes. Within species, black dots represent BPP of 1 and BS of 100 in both BI and ML analyses.

Fig. 4. Species tree of Lacertini inferred from mitochondrial (*12S* and *nd4*) and nuclear (*acm4*, β *fib*, *mc1r*, *pdc* and *reln*) DNA sequences using the multispecies coalescent model in BEAST software. The posterior probabilities \geq 0.90 are shown above nodes. Node ages and 95% highest posterior density intervals (HPD) values for supported nodes (indicated by the letters a–s) are presented in Table 4.

3.2. Comparison between mitochondrial and nuclear trees, ML and BI trees, and the species tree

Overall we found higher Bayesian Posterior Probabilities (BPP) support than the Bootstrap Support (BS) when comparing BI and ML trees, irrespective of the dataset used. When comparing results obtained with different phylogenetic methods (BI vs. ML approach) or different datasets (mitochondrial vs. nuclear data), we found that the position and relationships of some taxa are more sensitive to the markers than to the method used, with some inconsistencies between the results based on mtDNA vs. nucDNA data. The Eremiadini species *Atlantolacerta andreanskyi* is sister taxon to the Lacertini tribe in all the analyses including mtDNA + nucDNA data

(Figs. 3 and 4) but not in the trees based on the concatenated nucDNA, where it is positioned within Lacertini (Figs. 2 and S2) or in the BI tree based on the concatenated mtDNA, where it is sister taxon to all Lacertini with the exception of *Takydromus* (Fig. 1). The genus *Takydromus* is nested within the Lacertini tribe in all the trees, except in the BI tree based on the concatenated mtDNA where it is sister taxon to all the other Lacertini included in the analyses + *Atlantolacerta andreanskyi* (Fig. 1; BPP = 0.91). *Archaeolacerta* clustered in a group with *Zootoca*, *Scelarcis* and *Teira* in all the trees containing nucDNA data (Figs. 2–4, in green), in the tree based on the concatenated mtDNA it is either unresolved (ML tree, Fig. S1) or sister taxon to *Apathya* (BI tree, Fig. 1; BPP: 0.97). A relationship between *Hellenolacerta* and *Phoenicolacerta*

is supported only in the BI tree based on the concatenated mtDNA (Fig. 1; BPP: 0.96). Regarding *Algyroides*, the monophyly of the genus and sister taxa relationships between the species *A. marchi* and *A. fitzingeri*, and *A. nigropunctatus* and *A. moreoticus* are recovered in all the trees including nucDNA data. The clade formed by *A. marchi* and *A. fitzingeri* received high statistical support (Figs. 2–4, in orange; BPP > 0.97, BS = 73). In the trees based on mtDNA data only, the genus is either monophyletic (ML trees; Fig. S1) or paraphyletic (BI; Fig. 1) and a closer relationship between *A. moreoticus* and *A. marchi* is recovered with low statistical support (BPP = 0.85, BS = 59).

3.3. Molecular dating

Molecular dating results are shown in Table 4, along with the 95% highest probability density (HPD) intervals. The divergence between Gallotiinae and Lacertinae is estimated at around 30 million years ago (Mya) (HPD: 11.77–51.28; node a), with divergence between *Gallotia* and *Psammodromus* about 15 Mya (HPD: 8.92–22.38; node q). Divergence between the tribes Lacertini and Eremiadini is estimated at around 17 Mya (HPD: 10.68–25.7; node b). Within Lacertini, the majority of basal splits are placed in a short time span of about 2.5 million years during the Middle Miocene (15–12.5 Mya). The time to most recent common ancestors (TMRCAs) of the Lacertini genera are estimated in the late Miocene (11–5 Mya; Fig. 4, nodes d, f–p).

3.4. Topology tests

Supported nodes in ML trees recovered by previous studies were consistent with our results (Arnold et al., 2007; Fu, 2000, 1998; Harris et al., 1998; Hipsley et al., 2009; Mayer and Pavlicev, 2007; Pavlicev and Mayer, 2009), except the ML tree by Pyron et al. (2013) that shows 6 supported nodes (SHLaLRT values ≥ 85) that are not recovered in our ML tree. All the topological hypothesis constrained according to the three levels of support (support ≥ 85 : six nodes; support ≥ 90 : five nodes; and support ≥ 95 : two nodes), were rejected by the SH and AU tests. Results are presented in Table 5.

4. Discussion

The addition of faster evolving nuclear molecular markers and the use of multi-locus coalescent approaches to infer the phylogeny of Lacertini enabled the detection of new relationships between genera and provided insights into previously open questions concerning genera monophyly and the rapid radiation of the tribe.

4.1. Corroborations and advances in the Lacertini phylogeny

Taxonomy of Lacertidae as described by Arnold et al. (2007) is consistent with our study, with the subfamily Gallotiinae (*Gallotia* and *Psammodromus*) being sister taxon to the subfamily Lacertinae. Within the latter, the Eremiadini tribe, here represented by *Atlantolacerta*, is sister taxon to Lacertini. In the trees based on the concatenated nucDNA *Atlantolacerta* is placed within Lacertini (Figs. 2 and S2). This result may be caused either by the lack of a proper taxon sampling within Eremiadini or by the inadequacy of nuclear molecular data. A short time span between the split of the two Lacertinae tribes and the onset of radiations within each tribe could be out of the scope of the nuclear genes used, but relationships corroborate the taxonomy when using the mitochondrial markers either alone or in combination with nuclear data (Figs. 1, 3 and 4).

A completely new and very interesting phylogenetic relationship was detected in all the trees containing nuclear data between the genera Archaeolacerta, Zootoca and the sister taxa Teira and Scelarcis that formed a clade. The position of these taxa has been highly unstable across all the previous phylogenetic studies. Archaeolacerta, for instance, has been placed with Algyroides (Harris et al., 1998; Carranza et al., 2004), Darevskia (Pavlicev and Mayer, 2009), Zootoca (Fu, 2000; Hipsley et al., 2009), Scelarcis (Salvi et al., 2011) and Apathya (Pyron et al., 2013), often with low statistical support. In our results, the clade (Archaeolacerta, Zootoca, Teira and Scelarcis) is highly supported, although the position of Archaeolacerta and Zootoca is unresolved. The geographic distribution of these four genera is allopatric: Archaeolacerta is endemic to Corsica and Sardinia, which were separated from the Iberian plate around 30-27 Mya, although land connections with Europe and North Africa existed in the Messinian Salinity Crisis at 5.96-5.33 Mya (Duggen et al., 2003): Zootoca has the widest distribution of all lacertids, covering most of Eurasia north of the Mediterranean peninsulas; Teira has the westernmost distribution in the Madeira archipelago; and Scelarcis is endemic to northwest Africa. In addition to unrelated geographic distribution, these genera are also morphologically very different, all presenting unique morphological characters within Lacertini and many features found only in a minority of other Lacertini (Arnold et al., 2007). Therefore, the peculiar morphology of the members of this group, which is today represented by four effectively monotypic genera whose geographical distribution show little commonality, indicate that it is a relictual group that was once diverse and widespread. An ancient relationship between the members of this group during early speciation events in the tribe may explain why only the faster evolving nuclear markers used in this study provided enough phylogenetic signal for this relationship. The fact that this group had never been recovered in previous phylogenetic studies could be the result of different non-exclusive scenarios: (i) the extinction of original lineages from this ancestral group; (ii) the possible loss of signal in the mtDNA due to saturation at deep nodes; and (iii) the use of slow nuclear markers in previous studies, which might have missed the discrimination between this old split and others slightly older. This finding emphasises the importance of using fast nuclear molecular markers in the phylogenetic inference of fast radiations as they may shed light on some basal polytomies when the clustering of internal nodes occur in a short time span, such as in the case of Lacertini.

The close relationship between the genera *Teira* and *Scelarcis* found in all our trees (Figs. 1–4) is consistent with previous studies. *Scelarcis* was once included in the genus *Teira* (Mayer and Bischoff, 1996), and it has been argued by Pavlicev and Mayer (2009) that they should be reunited again under the genus *Teira*. However, these genera exhibit unique morphological features and, considering the high intraspecific differentiation found within *Teira dugesii* and *Scelarcis perspicillata*, they may represent reciprocally monophyletic species complexes (Brehm et al., 2003; Perera et al., 2007). Moreover, from a taxonomic point of view the repetitive actions of splitting and lumping these two genera may produce taxonomic instability rather than simplifying it, and therefore we suggest to keep the taxonomy proposed by Arnold et al. (2007).

Concerning the monophyly of the Lacertini genera, a previous study by Pavlicev and Mayer (2009) raised the possibility that *Algyroides* could be paraphyletic, as in their results, the monophyletic *Dinarolacerta* clade is nested within the *Algyroides* clade. Our results confirm that these two genera are closely related and form a clade (Figs. 1–4). Moreover, the nucDNA data used in this study support the monophyly of *Algyroides*, which is recovered in all the trees based on nuclear data (Figs. 2–4, Fig. S3; but also in the ML mtDNA tree, see Fig. S1), whereas the paraphyly of this genus is recovered only in the BI mtDNA tree (Fig. 1). Since overall we

have no support for paraphyly from molecular data, and considering that the four Algyroides species share unique morphological characters that distinguish them from all other lacertids (Arnold, 1973; Arnold et al., 2007) it is highly probable that this genus is monophyletic. Intrageneric relationships of Algyroides consist of two sister species pairs, the western clade of A. marchi and A. fitzingeri from southeast Spain and Corsica-Sardinia, and the eastern clade of A. nigropunctatus and A. moreoticus from the Balkan Peninsula and Peloponnese. The split between these two clades is represented by very long branches in all the trees, with a short internode between them and the clade including Dinarolacerta species. This pattern suggests a scenario where the split between the two lineages including two extant pairs of Algyroides sister taxa occurred soon after the cladogenesis between Algyroides and Dinarolacerta, likely followed by extensive extinction within Algyroides lineages which are today represented by four species with a relictual distribution. This would explain the well supported relationships between sister taxa within Algyroides and Dinarolacerta and the blurred relationships between these genera especially when using mitochondrial (Harris et al., 1999; this study) and slow evolving nuclear markers (Pavlicev and Mayer, 2009; Pyron et al., 2013).

Several sister taxa relationships recovered by our results were previously described, such as the case of the green lizards *Lacerta* and *Timon* (Arnold, 1973; Harris et al., 1998; Fu, 2000; Carranza et al., 2004; Arnold et al., 2007; Pyron et al., 2013). The species from these two genera are morphologically different from all other Lacertini, sharing a significantly bigger size and numerous nonmolecular features that do not usually appear in the small bodysized lizards from the rest of the tribe (Arnold et al., 2007).

The sister taxa relationships recovered between the genera *Anatololacerta* and *Parvilacerta* and between *Darevskia* and *Iranolacerta* have already been described before (Harris et al., 1998; Carranza et al., 2004; Arnold et al., 2007; Mayer and Pavlicev, 2007; Hipsley et al., 2009; Pavlicev and Mayer, 2009; Pyron et al., 2013). Species in each of these genera pair occupy the same geographic regions, the former species occur in Anatolia and Middle-East, the latter in the Caucasus and Middle-East, suggesting that they diverged from a common ancestor living somewhere near their shared geographical area.

4.2. Phylogenetic hypotheses on the evolutionary history of the Lacertini

The phylogenetic position of all other genera of the tribe (Apathya, Dalmatolacerta, Iberolacerta, Hellenolacerta, Podarcis, Phoenicolacerta and Takydromus) is not resolved in this study, despite the addition of information from fast evolving nuclear DNA and the application of coalescent-based phylogenetic methods. Therefore, our results support the hypothesis of a hard polytomy within the evolutionary tree of Lacertini (Pavlicev and Mayer, 2009). The basal polytomy observed in Lacertini would be indicative of a fast radiation, which, according to our molecular dating estimates, place the internal node divergence in a relatively short time span of about 2.5 million years in the Middle Miocene (from 15 to 12.5 Mya). A similar age for the radiation event has been described before by Pavlicev and Mayer (2009). The fast radiation hypothesis agrees with most of the previous molecular studies (Harris et al., 1998; Fu, 1998, 2000; Arnold et al., 2007; Mayer and Pavlicev, 2007) and was further corroborated by Paylicev and Mayer (2009). but is in sharp contrast with the results from the supermatrix approach applied by Pyron et al. (2013), where the internal branching of the Lacertini (sub)tree is almost completely statistically supported. Results of topological tests comparing our ML tree with that of Pyron et al. (2013) indicate that differences between these trees are statistically significant even for relationships very highly supported in the latter study. While differences between our results and Pyron et al. (2013) can be explained by the use of different molecular data and phylogenetic methods, this cannot explain the differences between Pyron et al. (2013) and the previous studies. Indeed, Pyron et al. (2013) used mostly the data generated in previous studies and implemented the same concatenation approach. On the other hand, since Pyron and colleagues were focused on the species-level relationships between squamate reptiles rather than on Lacertini, they used a very large-scale taxon sampling including 4161 species of lizards and snakes and a non-squamate outgroup taxa, Sphenodon punctatus. Estimating a tree of this size required high-speed approximations of tree topology searches, substitution models parameter estimates, as well as to assess node support for which they relied on a non-parametric SHLaLRT approach, since bootstrap analysis was computationally intractable. Such a largescale taxonomic focus also required the use of a large squamate sequence alignment and a non-squamate outgroup which are certainly appropriate to infer and root relationships between the main squamate lineages but maybe not optimal to assess relationships within Lacertini. These considerations suggest that the supermatrix approach may provide high support for relationships within tipclades which are actually not supported and inconsistent with those phylogenetic studies, with a narrower taxonomic focus, from where the data used in the supermatrix originated.

Finally, while providing additional support that inferring basal relationships within Lacertini is challenging, this study also highlights how adding a few fast evolving nuclear markers helps to shed some light on many ancient relationships within the tribe. In this context, the application of Next Generation Sequencing approaches makes it possible to generate information from thousands loci across the whole genome at a reasonable cost (McCormack et al., 2013), thus representing a promising research direction to further investigate early cladogenesis within Lacertini.

5. Conclusion

This study corroborates the difficulties in the recovery of the evolutionary history of Lacertini lizards, with strong evidence that these difficulties reflect a fast radiation event. Implementing nuclear data in the analyses allowed the recovery of novel phylogenetic relationships that solved some basal polytomies in previous studies, as well as support for the monophyly of *Algyroides*, and an overall increase in the node statistical support. Adding many informative nuclear DNA markers to the phylogenetic analyses proved more helpful to the recovery of the evolutionary history of Lacertini than applying different phylogenetic methods. This exemplifies the benefits of the use of fast evolving nuclear DNA to enhance recovery of ancient relationships in groups that experienced fast radiation and extensive extinctions within old lineages.

New data from fast evolving nuclear markers and the multispecies coalescent approach, implemented for the first time in this study, allowed comparisons to be made between two contrasting phylogenetic hypotheses for Lacertini drawn from previous studies focusing on Lacertidae or on a large-scale phylogeny of squamate reptiles. Through topological comparison of supported relationships, we found that the taxon-wide concatenated supermatrix approach provided high support for nodes that are not supported either by analyses of the original sequences data or by new data from this study. These findings have far reaching implication for comparative studies relying on megaphylogenies from supermatrices (Roquet et al., 2013). Indeed, while new largescale phylogenies built compiling molecular data from previous studies in a supermatrix may be a valuable resource for comparative macroecological and macroevolutionary studies with a focus on wide taxonomic groups or on higher-level relationships, caution is needed when using megaphylogenies as a guide for integrating tip-clades - such as inter-generic - relationships into ecological

studies. In the case of lacertids, relying on the phylogenetic estimates produced in the original studies in which the data were generated may be a better choice, especially when these studies are based on a comprehensive taxon and marker sampling. It remains to be investigated if this is a generality or if the case of Lacertini is a rare example in which the megaphylogeny approach appears to fail.

Acknowledgments

We thank CIBIO colleagues for providing DNA samples, in particular to Ana Perera for providing DNA sequences of Timon tangitanus and Scelarcis perspicillata; the California Academy of Sciences, San Francisco for providing tissue samples of Takydromus specimens CAS219910 and CAS219939; the Asociación Herpetológica Española (AHE) and Miguel A. Carretero for Algyroides photographs. This study was partially funded by the Project "Genomics and Evolutionary Biology" cofinanced by North Portugal Regional Operational Programme 2007/2013 (ON.2-O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF). IM, DIH, and DS are supported by the Fundação para a Ciência e a Tecnologia (FCT, Portugal): IM, doctoral grant SFRH/BD/81528/2011; DS, post-doctoral grant SFRH/BPD/105274/2014. SC is supported by Grant CGL2012-36970 from the Ministerio de Economía y Competitividad, Spain (co-funded by Fondos FEDER - EU).

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.ympev.2016.04. 016.

References

- Anisimova, M., Gascuel, O., 2006. Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst. Biol. 55, 539–552. http://dx.doi. org/10.1080/10635150600755453.
- Arévalo, E., Davis, S.K., Sites, J.W.J., 1994. Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the *Sceloporus grammicus* complex (Phrynosomatidae) in Central Mexico. Syst. Biol. 43, 387–418. http://dx.doi.org/10.1093/sysbio/43.3.387.
- Arnold, E.N., 1973. Relationships of the palaearctic lizards assigned to the genera Lacerta, Algyroides and Psammodromus (Reptilia: Lacertidae). Bull. Br. Museum 25, 289–366.
- Arnold, E.N., Arribas, O., Carranza, S., 2007. Systematics of the Palaearctic and Oriental lizard tribe Lacertini (Squamata: Lacertidae: Lacertinae), with Descriptions of Eight New Genera, vol. 1430. Magnolia Press. Zootaxa, pp. 1–86.
- Baeckens, S., Edwards, S., Huyghe, K., Van Damme, R., 2015. Chemical signalling in lizards: an interspecific comparison of femoral pore numbers in Lacertidae. Biol. J. Linn. Soc. 114, 44–57. http://dx.doi.org/10.1111/bij.12414.
- Barata, M., Carranza, S., Harris, D.J., 2012. Extreme genetic diversity in the lizard Atlantolacerta andreanskyi (Werner, 1929): a montane cryptic species complex. BMC Evol. Biol. 12, 167. http://dx.doi.org/10.1186/1471-2148-12-167.
- Bauer, A.M., de Silva, A., Greenbaum, E., Jackman, T., 2007. A new species of day gecko from high elevation in Sri Lanka, with a preliminary phylogeny of Sri Lankan *Cnemaspis* (Reptilia, Squamata, Gekkonidae). Mitteilungen aus dem Museum für Naturkd. Berlin – Zool. R. 83, 22–32.
- Brehm, A., Jesus, J., Spínola, H., Alves, C., Vicente, L., Harris, D.J., 2003. Phylogeography of the Madeiran endemic lizard Lacerta dugesii inferred from mtDNA sequences. Mol. Phylogenet. Evol. 26, 222–230. http://dx.doi.org/ 10.1016/S1055-7903(02)00310-X.
- Brown, R.P., Terrasa, B., Pérez-Mellado, V., Castro, J.A., Hoskisson, P.A., Picornell, A., Ramon, M.M., 2008. Bayesian estimation of post-Messinian divergence times in Balearic Island lizards. Mol. Phylogenet. Evol. 48, 350–358. http://dx.doi.org/ 10.1016/j.ympev.2008.04.013.
- Carranza, S., Arnold, E.N., 2012. A Review of the Geckos of the Genus *Hemidactylus* (Squamata: Gekkonidae) from Oman Based on Morphology, Mitochondrial and Nuclear Data, with Descriptions of Eight New Species, vol. 95. Magnolia Press. Zootaxa, pp. 1–95.
- Carranza, S., Arnold, E.N., Amat, F., 2004. DNA phylogeny of *Lacerta* (*Iberolacerta*) and other lacertine lizards (Reptilia: Lacertidae): did competition cause longterm mountain restriction? Syst. Biodivers. 2, 57–77. http://dx.doi.org/ 10.1017/S1477200004001355.

- Castresana, J., 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552.
- Cox, S.C., Carranza, S., Brown, R.P., 2010. Divergence times and colonization of the Canary Islands by *Gallotia* lizards. Mol. Phylogenet. Evol. 56, 747–757. http://dx. doi.org/10.1016/j.ympev.2010.03.020.
- Degnan, J.H., Rosenberg, N.A., 2006. Discordance of species trees with their most likely gene trees. PLoS Genet. 2, e68. http://dx.doi.org/10.1371/journal. pgen.0020068.
- Drummond, A.J., Suchard, M.A., Xie, D., Rambaut, A., 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973. http://dx.doi. org/10.1093/molbev/mss075.
- Duggen, S., Hoernie, K., van den Bogaard, P., Rupke, L., Morgan, J.F., 2003. Deep roots of the Messinian salinity crisis. Nature 422, 602–606. http://dx.doi.org/ 10.1038/nature01551.1.
- Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl. Acids Res. 32, 1792–1797. http://dx.doi.org/ 10.1093/nar/gkh340.
- Flot, J.-F., 2010. SEQPHASE: a web tool for interconverting PHASE input/output files and FASTA sequence alignments. Mol. Ecol. Resour. 10, 162–166. http://dx.doi. org/10.1111/j.1755-0998.2009.02732.x.
- Flot, J.-F., Tillier, A., Samadi, S., Tillier, S., 2006. Phase determination from direct sequencing of length-variable DNA regions. Mol. Ecol. Notes 6, 627–630. http:// dx.doi.org/10.1111/j.1471-8286.2006.01355.x.
- Fu, J., 1998. Toward the phylogeny of the family Lacertidae: implications from mitochondrial DNA 12S and 16S gene sequences (Reptilia: Squamata). Mol. Phylogenet. Evol. 9, 118–130. http://dx.doi.org/10.1006/mpev.1997.0456.
- Fu, J., 2000. Toward the phylogeny of the family Lacertidae why 4708 base pairs of mtDNA sequences cannot draw the picture. Biol. J. Linn. Soc. 71, 203–217. http://dx.doi.org/10.1006/bijl.1999.0431.
- Gamble, T., Bauer, A.M., Greenbaum, E., Jackman, T.R., 2008. Evidence for Gondwanan vicariance in an ancient clade of gecko lizards. J. Biogeogr. 35, 88–104. http://dx.doi.org/10.1111/j.1365-2699.2007.01770.x.
- Gibbs, M.J., Armstrong, J.S., Gibbs, A.J., 2000. Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16, 573–582. http://dx.doi.org/10.1093/bioinformatics/16.7.573.
- Harris, D.J., Arnold, E.N., Thomas, R.H., 1998. Relationships of lacertid lizards (Reptilia: Lacertidae) estimated from mitochondrial DNA sequences and morphology. Proc. Biol. Sci. 265, 1939–1948. http://dx.doi.org/10.1098/rspb.1998.0524.
- Harris, D.J., Arnold, E.N., Thomas, R.H., 1999. A phylogeny of the European lizard genus Algyroides (Reptilia: Lacertidae) based on DNA sequences, with comments on the evolution of the group. J. Zool. London 249, 49–60.
- Harris, D.J., Carranza, S., Arnold, E.N., Pinho, C., Ferrand, N., 2002. Complex biogeographical distribution of genetic variation within *Podarcis* wall lizards across the Strait of Gibraltar. J. Biogeogr. 29, 1257–1262. http://dx.doi.org/ 10.1046/j.1365-2699.2002.00744.x.
- Herrel, A., Huyghe, K., Vanhooydonck, B., Backeljau, T., Breugelmans, K., Grbac, I., Van Damme, R., Irschick, D.J., 2008. Rapid large-scale evolutionary divergence in morphology and performance associated with exploitation of a different dietary resource. Proc. Natl. Acad. Sci. 105, 4792–4795. http://dx.doi.org/10.1073/ pnas.0711998105.
- Heulin, B., Surget-Groba, Y., Sinervo, B., Miles, D., Guiller, A., 2011. Dynamics of haplogroup frequencies and survival rates in a contact zone of two mtDNA lineages of the lizard *Lacerta vivipara*. Ecography (Cop.) 34, 436–447. http://dx. doi.org/10.1111/j.1600-0587.2010.06540.x.
- Hipsley, C.A., Himmelmann, L., Metzler, D., Müller, J., 2009. Integration of Bayesian molecular clock methods and fossil-based soft bounds reveals early Cenozoic origin of African lacertid lizards. BMC Evol. Biol. 9, 151. http://dx.doi.org/ 10.1186/1471-2148-9-151.
- Kocher, T.D., Thomas, W.K., Meyer, A., Edwards, S.V., Pääbo, S., Villablanca, F.X., Wilson, A.C., 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. USA 86, 6196–6200.
- Kubatko, L.S., Degnan, J.H., 2007. Inconsistency of phylogenetic estimates from concatenated data under coalescence. Syst. Biol. 56, 17–24. http://dx.doi.org/ 10.1080/10635150601146041.
- Maddison, W.P., 1997. Gene trees in species trees. Syst. Biol. 46, 523–536. http://dx. doi.org/10.2307/2413694.
- Maddison, W.P., Maddison, D.R., 2015. Mesquite: a modular system for evolutionary analysis. Version 3.04. http://mesquiteproject.org.
- Martin, D., Rybicki, E., 2000. RDP: detection of recombination amongst aligned sequences. Bioinformatics 16, 562–563. http://dx.doi.org/10.1093/ bioinformatics/16.6.562.
- Martin, D.P., Lemey, P., Lott, M., Moulton, V., Posada, D., Lefeuvre, P., 2010. RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 26, 2462–2463. http://dx.doi.org/10.1093/bioinformatics/btq467.
- Martin, D.P., Posada, D., Crandall, K.A., Williamson, C., 2005. A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res. Hum. Retroviruses 21, 98–102. http:// dx.doi.org/10.1089/aid.2005.21.98.
- Mayer, W., Bischoff, W., 1996. Beiträge zur taxonomischen Revision der Gattung Lacerta (Reptilia: Lacertidae) Teil 1: Zootoca, Omanosaura, Timon und Teira als eigenstandige Gattungen. Salamandra 32, 163–170.
- Mayer, W., Pavlicev, M., 2007. The phylogeny of the family Lacertidae (Reptilia) based on nuclear DNA sequences: convergent adaptations to arid habitats within the subfamily Eremiainae. Mol. Phylogenet. Evol. 44, 1155–1163. http:// dx.doi.org/10.1016/j.ympev.2007.05.015.

- McCormack, J.E., Hird, S.M., Zellmer, A.J., Carstens, B.C., Brumfield, R.T., 2013. Applications of next-generation sequencing to phylogeography and phylogenetics. Mol. Phylogenet. Evol. 66, 526–538. http://dx.doi.org/10.1016/j. ympev.2011.12.007.
- McVay, J.D., Carstens, B.C., 2013. Phylogenetic model choice: justifying a species tree or concatenation analysis. J. Phylogenetics Evol. Biol. 01, 1–8. http://dx.doi. org/10.4172/2329-9002.1000114.
- Miller, M.A., Pfeiffer, W., Schwartz, T., 2010. Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees. In: 2010 Gateway Computing Environments Workshop (GCE). IEEE. http://dx.doi.org/10.1109/GCE.2010. 5676129, pp. 1–8.
- Padidam, M., Sawyer, S., Fauquet, C.M., 1999. Possible emergence of new geminiviruses by frequent recombination. Virology 265, 218–225. http://dx. doi.org/10.1006/viro.1999.0056.
- Pavlicev, M., Mayer, W., 2009. Fast radiation of the subfamily Lacertinae (Reptilia: Lacertidae): history or methodical artefact? Mol. Phylogenet. Evol. 52, 727–734. http://dx.doi.org/10.1016/j.ympev.2009.04.020.
- Perera, A., Vasconcelos, R., Harris, D.J., Brown, R.P., Carretero, M.A., Pérez-Mellado, V., 2007. Complex patterns of morphological and mtDNA variation in *Lacerta perspicillata* (Reptilia; Lacertidae). Biol. J. Linn. Soc. 90, 479–490. http://dx.doi. org/10.1111/j.1095-8312.2007.00736.x.
- Pinho, C., Harris, D.J., Ferrand, N., 2008. Non-equilibrium estimates of gene flow inferred from nuclear genealogies suggest that Iberian and North African wall lizards (*Podarcis* spp.) are an assemblage of incipient species. BMC Evol. Biol. 8, 63. http://dx.doi.org/10.1186/1471-2148-8-63.
- Pinho, C., Rocha, S., Carvalho, B.M., Lopes, S., Mourão, S., Vallinoto, M., Brunes, T.O., Haddad, C.F.B., Gonçalves, H., Sequeira, F., Ferrand, N., 2009. New primers for the amplification and sequencing of nuclear loci in a taxonomically wide set of reptiles and amphibians. Conserv. Genet. Resour. 2, 181–185. http://dx.doi.org/ 10.1007/s12686-009-9126-4.
- Posada, D., 2008. JModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256. http://dx.doi.org/10.1093/molbev/msn083.
- Poulakakis, N., Lymberakis, P., Valakos, E., Pafilis, P., Zouros, E., Mylonas, M., 2005. Phylogeography of Balkan wall lizard (*Podarcis taurica*) and its relatives inferred from mitochondrial DNA sequences. Mol. Ecol. 14, 2433–2443. http://dx.doi. org/10.1111/j.1365-294X.2005.02588.x.
- Pyron, R., Burbrink, F.T., Wiens, J.J., 2013. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 13, 93. http://dx.doi.org/10.1186/1471-2148-13-93.
- Rambaut, A., Drummond, A., 2007. Tracer v1.4, <http://beast.bio.ed.ac.uk/Tracer>.
- Roquet, C., Thuiller, W., Lavergne, S., 2013. Building megaphylogenies for macroecology: taking up the challenge. Ecography (Cop.) 36, 13–26. http://dx. doi.org/10.1111/j.1600-0587.2012.07773.x.
- Salvi, D., Bombi, P., Vignoli, L., 2011. Phylogenetic position of the southern rock lizard Australolacerta australis within the Lacertidae radiation. Afr. J. Herpetol. 60, 60–69. http://dx.doi.org/10.1080/21564574.2010.547609.

- Salvi, D., Capula, M., Bombi, P., Bologna, M.A., 2009. Genetic variation and its evolutionary implications in a Mediterranean island endemic lizard. Biol. J. Linn. Soc. 98, 661–676. http://dx.doi.org/10.1111/j.1095-8312.2009.01313.x.
- Salvi, D., Harris, D.J., Bombi, P., Carretero, M.A., Bologna, M.A., 2010. Mitochondrial phylogeography of the Bedriaga's rock lizard, *Archaeolacerta bedriagae* (Reptilia: Lacertidae) endemic to Corsica and Sardinia. Mol. Phylogenet. Evol. 56, 690– 697. http://dx.doi.org/10.1016/j.ympev.2010.03.017.
- Salvi, D., Harris, D.J., Kaliontzopoulou, A., Carretero, M.A., Pinho, C., 2013. Persistence across Pleistocene ice ages in Mediterranean and extra-Mediterranean refugia: phylogeographic insights from the common wall lizard. BMC Evol. Biol. 13, 147. http://dx.doi.org/10.1186/1471-2148-13-147.
- Salvi, D., Schembri, P.J., Sciberras, A., Harris, D.J., 2014. Evolutionary history of the Maltese wall lizard *Podarcis filfolensis*: insights on the "Expansion-Contraction" model of Pleistocene biogeography. Mol. Ecol. 23, 1167–1187. http://dx.doi.org/ 10.1111/mec.12668.
- Sambrook, J., Fritsch, E.F., Maniatis, T., 1989. Molecular Cloning: A Laboratory Manual.
- Shimodaira, H., 2002. An approximately unbiased test of phylogenetic tree selection. Syst. Biol. 51, 492–508. http://dx.doi.org/10.1080/106351502900 69913.
- Shimodaira, H., Hasegawa, M., 1999. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol. Biol. Evol. 16, 1114–1116.
- Shimodaira, H., Hasegawa, M., 2001. CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17, 1246–1247. http://dx.doi.org/ 10.1093/bioinformatics/17.12.1246.
- Silvestro, D., Michalak, I., 2012. RaxmlGUI: a graphical front-end for RAxML. Org. Divers. Evol. 12, 335–337. http://dx.doi.org/10.1007/s13127-011-0056-0.
- Smith, J.M., 1992. Analyzing the mosaic structure of genes. J. Mol. Evol. 34, 126–129.Stamatakis, A., 2006. RAXML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–
- 2690. http://dx.doi.org/10.1093/bioinformatics/btl446. Stephens, M., Scheet, P., 2005. Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am. J. Hum. Genet. 76, 449– 462. http://dx.doi.org/10.1086/428594.
- Stephens, M., Smith, N.J., Donnelly, P., 2001. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68, 978–989. http://dx. doi.org/10.1086/319501.
- Uetz, P., Hošek, J. (Eds). The Reptile Database. <<u>http://www.reptile-database.org</u>>. (Accessed August 13, 2015).
- Vanhooydonck, B., Van Damme, R., 1999. Evolutionary relationships between body shape and habitat use in lacertid lizards. Evol. Ecol. Res. 1, 785–803.
- Weisrock, D.W., Smith, S.D., Chan, L.M., Biebouw, K., Kappeler, P.M., Yoder, A.D., 2012. Concatenation and concordance in the reconstruction of mouse lemur phylogeny: an empirical demonstration of the effect of allele sampling in phylogenetics. Mol. Biol. Evol. 29, 1615–1630. http://dx.doi.org/ 10.1093/molbev/mss008.

Fig. S1. Phylogenetic relationships of Lacertini based on Maximum Likelihood analyses of concatenated mitochondrial DNA sequences (12S and nd4). Bootstrap values (BS) \geq 70 are shown above branches. Within species, black dots represent BS = 100; grey dots represent BS of 70 \geq 99.

Fig. S2. Phylogenetic relationships of Lacertini based on Maximum Likelihood analyses of concatenated nuclear DNA sequences (*acm4*, βfib , *mc1r*, *pdc* and *reln*). Bootstrap values \geq 70 are shown above branches. Within species, black dots represent BS = 100; grey dots represent BS of 70 \geq 99.

Fig. S3. Phylogenetic relationships of Lacertini based on Maximum Likelihood analyses of concatenated mitochondrial (*12S* and *nd4*) and nuclear DNA sequences (*acm4*, βfib , *mc1r*, *pdc* and *reln*). Bootstrap values \geq 70 are shown above branches. Within species, black dots represent BS = 100.