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Altitudinal gradients offer a good opportunity to study organisms’ adaptations to clinal environmental variables.
Regarding altitude, the most influential variables on organisms are temperature and ultraviolet (UV) solar
radiation, the first decreasing and the second increasing with altitude. Both variables affect ectotherms’ biology,
as ectotherms depend on environmental temperature for thermoregulation, frequently being heliotherms. Here, we
studied dorsal coloration in the lizard Psammodromus algirus (Linnaeus, 1758) along a wide altitudinal gradient
(2200 m) in Sierra Nevada (south-east Spain). We hypothesize that the skin will be darker with altitude, i.e. in
environments with lower temperatures and higher UV radiation intensity. Results show that individual dorsal
colorations became darker at high altitude. We propose two non-mutually exclusive explanations for this result: (1)
darker dorsal surface would favour faster warming at high altitudes, where temperature is lower, and (2) darker
dorsal surface would protect against UV radiation, stronger at high altitudes. We found significant relationships
between both temperature and UV radiation and population dorsal darkness, giving mixed support for the two
explanations. Moreover, dorsal hue was positively correlated with substrate hue, suggesting that hue evolved to
maximize crypsis. Our study therefore suggests that geographical variation in dorsal coloration in this lizard is
adaptive, and darkness coloration might have evolved in response to adverse conditions (low temperature and high
UV radiation) at high altitudes. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society,
2014, 112, 132–141.
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INTRODUCTION

The environment gradually varies with altitude
(Körner, 2007) and, accordingly, organisms distributed
in a wide altitudinal range may be locally adapted,
generating clines for several traits with altitude
(Welter-Schultes, 2000; Blackburn & Ruggiero, 2001;
Ashton & Feldman, 2003). In fact, animals may show
adaptive variation in coloration in relation to eleva-
tion. For example, darker individuals are expected at
higher elevations, where temperatures are lower, a
pattern that may be explained by the ‘thermal mela-
nism hypothesis’ (Clusella-Trullas, van Wyk & Spotila,
2007). This hypothesis states that, compared with light
individuals, darker individuals have an advantage
under low-temperature conditions, because they heat

up faster at a given level of solar radiation (Watt, 1969;
Clusella-Trullas et al., 2007, 2008). Heating up faster
is important for ectotherms, especially for reptiles,
which depend largely on solar radiation for ther-
moregulation (Vitt & Caldwell, 2009). Populations
distributed along an altitudinal range face tempera-
ture gradients, which provide a good opportunity to
study the evolution of body coloration and its relation-
ship to thermoregulation (Clusella-Trullas et al.,
2007).

A second hypothesis, non-mutually exclusive with
the first, that could explain why organisms darken
with altitude is based on the increasing UV radiation
intensity with elevation (‘protection against UV
damage hypothesis’, Porter & Norris, 1969). Most
ectothermic organisms (in particular, heliotherms)
rely on solar radiation to thermoregulate, but this
radiation may have harmful effects at high altitude,
where it is stronger. Moreover, given that thermal*Corresponding author. E-mail: sreguera@ugr.es
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energy availability is lower at higher altitudes, alpine
reptiles, which furthermore spend more time sun-
bathing (Carrascal et al., 1992; Martín & López, 1999;
Gvoždík, 2002), would spend more time exposed to
the harmful effects of solar radiation. High levels
of UV radiation produce damage to DNA (Ravanat,
Douki & Cadet, 2001), increase egg and embryo mor-
tality, and reduce larva growth and development
in amphibians (Belden, Wildy & Blaustein, 2000;
Lizana & Pedraza, 2008; Marquis, Miaud & Lena,
2008), and cause tissue damages and cellular oxida-
tive stress (Chang & Zheng, 2003). Consequently,
organisms show several strategies to protect them-
selves from the harmful effects of UV radiation,
sun-screen factors being one of the most important.
Sun-screen factors, such as carotenoid and melanin
pigmentation (Zellmer, 1995; Hessen, 1996; Gunn,
1998), protect against UV radiation by absorbing it
(Hofer & Mokri, 2000; Cope et al., 2001). Accordingly,
given that UV radiation increases with altitude
because the atmosphere is thinner (Blumthaler,
Ambach & Ellinger, 1997), we expect individuals to
darken at higher elevations.

Ectotherms tend to be darker at colder latitudes
(Vidal, Ortiz & Labra, 2007; Alho et al., 2010).
Regarding altitude, melanic morphs of arthropods
are more frequent at high altitudes (Zellmer, 1995;
Hessen, 1996; Rajpurohit, Parkash & Ramniwas,
2008; more examples in Clusella-Trullas et al., 2007).
In reptiles, darker Cordylus species occur more fre-
quently in colder and foggy areas, where melanism is
interpreted as an advantage for faster heating (Janse
van Rensburg, Mouton & van Niekerk, 2009). Moreo-
ver, melanic Cordylus spp. heat up faster, as a con-
sequence of their low reflectance (Clusella-Trullas,
van Wyk & Spotila, 2009). Sceloporus occidentalis
(Baird and Girard, 1852) lizards from populations
sited at high altitudes show darker colorations
(Leaché, Helmer & Moritz, 2010), and Podarcis
hispanica (Steindachner, 1870) lizards inhabiting
colder environments are darker than conspecifics in
warmer sites (Gabirot et al., 2013).

On the other hand, geographical variation of
darkness in lizard coloration may be due to non-
physiological selective pressures. For example, pres-
sure of predation selects for cryptic coloration, which
may be darker depending on substrate colour (Thorpe
& Brown, 1989; Husak et al., 2006; Jambrich &
Jandzik, 2012). In this sense, clinal variation in sub-
strate coloration might explain different coloration in
animals.

Here we studied the shifts in the dorsal coloration
of a lizard, the large psammodromus (Psammodromus
algirus Linnaeus, 1758), along a 2200-m altitudinal
gradient in south-eastern Spain, as possible adapta-
tion in a clinal variation of environmental conditions.

This species inhabits a wide gradient of altitudes
and environmental conditions (Salvador, 2011). As
an ectotherm, P. algirus depends closely on environ-
mental temperatures to thermoregulate (Díaz,
Iraeta & Monasterio, 2006). These circumstances
make P. algirus a suitable organism for this study.
Psammodromus algirus is distributed between
200–2600 m above sea level on the Sierra Nevada
Mountain of south-east Spain. Here, environmen-
tal temperatures decrease strongly with altitude
(Zamora-Camacho et al., 2013), while UV radiation
increases (Sola et al., 2008). We hypothesize that, in
this elevation gradient, lizards’ dorsal coloration
darkens with altitude, under selective pressures
such as lower environmental temperatures (because
darker surfaces heat up faster) and/or higher UV
radiation levels (because darker surfaces best pro-
tect against the harmful effects of UV radiation).
Alternatively, changes in dorsal coloration may be a
consequence of variation in substrate colour owing
to predation pressure, because a greater similarity
between dorsal coloration and the surroundings
implies less detectability by predators.

Therefore, the main goal of this study was to test the
hypothesis that dorsal coloration varies with altitude
in P. algirus. Here, we predict darker individuals at
higher elevations. In a second step, we tentatively test
the different hypotheses explaining the variation in
dorsal coloration with altitude. We test these hypoth-
eses by correlating the average dorsal coloration of
lizards in our six study populations with average
temperature, UV radiation and substrate colour.

MATERIAL AND METHODS
GENERAL METHODS

Psammodromus algirus is a lacertid lizard of 60–
80 mm snout–vent length (SVL), abundant in
shrubby Mediterranean habitats. It extends from
south-eastern France to Morocco, including most of
the Iberian Peninsula, along a wide elevation range
(0–2600 m a.s.l.), where it is exposed to a wide range
of environmental conditions (Salvador, 2011). Dorsal
coloration spans from pale to dark brown, with two
dorsolateral yellow lines and a third mid-vertebral
line in eastern populations (Salvador, 2011). Ventral
ground-coloration goes from white to grey and fre-
quently with yellow pigmentation in the throat region
that varies in extent and intensity (Carretero, 2002).
In western populations, males show orange pigmen-
tation around the gular region during the breeding
season (Salvador, 2011), but not in eastern popula-
tions, where males only show an orange spot in the
commissures (Carretero, 2002). Dorsal pattern does
not have sexual dimorphism.
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Sampling was performed on Sierra Nevada
(south-east Spain 3°37′59.8698″W, 36°54′57.8318″N),
between 300 and 2500 m a.s.l. We established six
populations separated by approximately 500 m in alti-
tude (300, 700, 1200, 1700, 2200, 2500 m a.s.l.; Fig. 1),
chosen according to similarity in slope and vegetation
structure (more details in Supporting Information, in
Methods S1). In the Sierra Nevada, mean annual
temperature is 17.6–3.5 °C, according to altitude (261–
3471 m a.s.l., respectively; Fig. S1), and in the study
area air environmental temperature during the activ-
ity period (March to September) of P. algirus differs
8 °C on average (mean ± SD) between the lowest
(300 m a.s.l.; 25.0 ± 5.09 °C) and the highest popula-
tions (2500 m a.s.l.; 17.2 ± 4.87 °C; Zamora-Camacho
et al., 2013). Relative irradiance increases with alti-
tude on average 6–8% km−1 for UV-A radiation and
7–11% km−1 for UV-B (Sola et al., 2008). In addition,
UV radiation (300 nm wavelength) values on average
ranged from 1.28 ± 0.03 μW cm−2 nm−1 in lowlands to
4.80 ± 0.37 μW cm−2 nm−1 in highlands (see measure-
ment methodology below).

During 2010–2013 we captured by hand 492 lizards
(255 females and 237 males) during their activity
season (March to October) in the six populations
(N(altitude) = females/males; N300 = 48/60; N700 = 38/22;

N1200 = 32/19; N1700 = 38/35; N2200 = 51/42; N2500 = 48/
59). Individuals were transported to a laboratory facil-
ity where colour characters were measured with
a spectrophotometer (Minolta CM-2600d/2500d).
Colour measures had the three chromatic values of the
L*C*H* colour space, based on the L*a*b* colour space
of the Commission Internationale d’Eclairage (CIE),
which describes all the colours visible for most of the
diurnal terrestrial vertebrates (Montgomerie, 2006).
The coordinate L* represents Lightness, from black
(L* = 0) to white (L* = 100). We also considered
chroma (colour saturation), C* = [(a*)2 + (b*)2]1/2 [0 in
the centre of the colour space (unsaturated) and
increases according to the distance from the centre];
and hue angle, H* = arc-tangent(b*, a*) in radians
(after transforming radians into grades, it defines
coloration as 0° for red, 90° for yellow, 180° for green
and 270° for blue). Measures were obtained from
two points (3 mm in diameter) of the dorsal surface,
one at pileus and other at middle back (avoiding yellow
lines).

Furthermore, SVL was measured with a metal
ruler (accuracy 1 mm), and lizards were weighed
with an electronic balance (Model Radwag WTB200,
accuracy 0.01 g). We characterized sex based mainly
on femoral pore development (more conspicuous in

Figure 1. Location of Sierra Nevada Mountain in Spain and of the six populations in a three-dimensional map. Numbers
indicate location of populations at 300 m a.s.l. (1), 700 m (2), 1200 m (3), 1700 m (4), 2200 m (5) and 2500 m (6).
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males). To avoid the effect of ontogenetic shift in
dorsal coloration (MANOVA test with colour traits
as dependent variable and age category as factor;
F1,387 = 4.19, P < 0.001), we only considered adult
individuals in the analyses. We considered as adult
those males with body size larger than the SVL of the
smallest male with orange commissure and those
females with body size larger than the SVL of the
smallest gravid female. Both of are objective charac-
ters that reveal sexual maturity. These criteria were
applied separately for each population, as body size
(and thus minimal adult body size) varied with alti-
tude (see Table S1).

Lizards were captured under permission (refer-
ences GMN/GyB/JMIF and ENSN/JSG/JEGT/MCF)
of the Junta de Andalucía and Parque Nacional
de Sierra Nevada (Spanish Government) and were
released at the capture site within 1 week. No lizard
was damaged as a consequence of this study.

STATISTICAL ANALYSES

Variation in dorsal colour with altitude
To achieve the main goal of our study, we tested for
differences in dorsal colour of lizards among altitudes.
In this analysis, individual lizards were used as sta-
tistical units blocked by population (= altitude). We
used lineal models (Quinn & Keough, 2002) run with
R version 2.15.2 (R Development Core Team, 2012).
Initially, six variables were considered for describing
dorsal coloration: Pileus L*, Pileus C*, Pileus H*,
Back L*, Back C* and Back H*. We generated a
matrix of Pearson’s partial correlations (controlling
for altitude) to examine the relationships among the
colour variables. The matrix of correlations showed
that pileus and back coloration were highly correlated
(all P values < 0.05; Table S2), so we included only
back data in further analyses. Finally, we ran mixed
effect linear models (LMMs) for each colour compo-
nents (Zuur et al., 2009): lightness, chroma and hue.
We introduced in these analyses altitude (correspond-
ing to the six populations sampled) and sex (male and
female) as fixed factors, and body size as co-variable.
Body size was estimated with a principal component
analysis (PCA) in order to combine mass and SVL,
as both were highly correlated (r = 0.9, P < 0.001,
N = 356). In addition, we introduced month (from
March to August) and year (from 2010 to 2013) as
random factors, as we wanted to correct the possible
variance they could be introducing in the model, but
we were not interested in their effect on our depend-
ent variables (colour components). We checked all
interactions among independent variables, but only
significant interactions remained in final models. For
each model, we tested normality and homoscedasti-
city in residuals. Differences in coloration between

pairs of populations were tested with Tukey’s ‘Honest
Significant Difference’ post hoc test (Tukey HSD).

Relationship between population-level dorsal colour
and environmental variables
To achieve the secondary goal of our study (a tenta-
tive test of three hypotheses explaining altitudinal
variation in dorsal colour in this lizard), we tested the
relationship among dorsal average coloration (at the
level of population) with the characteristics of their
population: environmental temperature, UV-B radia-
tion, vegetation cover and substrate coloration. We
measured these environmental variables in every
population. (1) We recorded environmental tempera-
ture 1 m above the ground, under a shade, using a
Hibok 14 thermometer (accuracy 0.1 °C) (more details
in Zamora-Camacho et al., 2013). (2) We measured
UV-B radiation (μW cm−2 nm−1) using a BIC compact
four-channel radiometer (Biospherical Inc.). Radia-
tion was measured twice a day at the beginning of
August, every minute during a 10-min period. We
used these data to predict radiation along the day, by
using a polynomial model. Values of UV-B radiation
were obtained by the 305-nm wavelength channel
to pick lizards’ activity period (11:00–18:00 h). (3)
We measured vegetation cover at the middle of the
growing season (spring). To measure the vegetation
structure in each sampling station, we randomly set
five transects 50 m long and recorded the presence or
absence of vegetation (from grass-size to bush-size;
see Methods S1) every metre. (4) We also measured
ground coloration taking pictures of the substrate
where lizards were captured and processing these
pictures with Adobe Photoshop CS5 software (Pereira
& Amat, 2010). After standardizing the pictures, we
measured the average coloration in the L*a*b* colour
space in 25 points (5 × 5 pixels), and estimated
L*C*H* as described above.

Finally, using populations as statistical units, we
correlated (Spearman correlations) mean values of
lizards’ dorsal coloration for each altitude with mean
environmental temperature, mean UV-B radiation,
percentage vegetation cover and mean values of sub-
strate colour.

RESULTS
VARIATION IN DORSAL COLOUR WITH ALTITUDE

We found significant differences in all three dorsal
colour components of P. algirus (lightness, chroma
and hue angle) with altitude (Table 1, Fig. 2). Indi-
viduals from the two highest populations were darker
(lower lightness values) than those in lower popula-
tions (Fig. 2). Dorsal coloration was less vivid (lower
values of chroma) in the two highest populations
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(Fig. 2). Individuals were redder (lower values of hue
angle) at 1700 m and especially at 2200 and 2500 m
a.s.l. than at 300–1200 m a.s.l. Post hoc Tukey HSD
tests revealed significant differences between both
the 2200 and the 2500 m populations and the remain-
ing populations for the three colour components
measured (Table S3). Sexual differences were found
only for chroma (Table 1). Males had more vivid
dorsal coloration (mean ± SE; females = 12.26 ± 0.18,
males = 13.03 ± 0.21). Finally, body size was an
important predictor for lightness, even after control-
ling for altitude (Table 1). Larger individuals had
higher values of lightness (β = 2.38). Nevertheless, we
found a significant interaction between altitude and
body size for dorsal lightness, given that the positive
correlation between dorsal lightness and body size
was found only in the populations at 300, 700 and
1700 m a.s.l. (Fig. 3).

RELATIONSHIP BETWEEN POPULATION-LEVEL DORSAL

COLOUR AND ENVIRONMENTAL VARIABLES

Temperature was negatively correlated with altitude,
whereas UV radiation was positively correlated
(Table 2; see mean population values of variables
in Table S4). There was no significant correlation
between altitude and vegetation cover (Table 2).
Regarding substrate coloration, hue angle and light-
ness significantly covaried with altitude, substrate
being darker as altitude increased (Table 2). Mean
dorsal lightness of lizards decreased with altitude,
but not significantly (Table 2). Moreover, lightness

increased significantly with mean values of environ-
mental temperature and decreased with UV radiation
and vegetation cover (Table 2). Dorsal lightness did not
covary with substrate lightness (Table 2). Mean values
of dorsal chroma decreased significantly with altitude.
Moreover, chroma increased with temperature and
decreased with UV radiation (Table 2). Dorsal hue
behaved similarly, decreasing significantly with alti-
tude, increasing with temperature and decreasing
with UV radiation (Table 2). Dorsal hue also was
positively correlated with substrate hue (Table 2).

DISCUSSION

Psammodromus algirus showed dorsal colour varia-
tion in the altitudinal gradient examined in this
study. Dorsal surface was darker at the highest alti-
tudes (over 2000 m a.s.l.) and had less vivid and
redder coloration. In addition, for a given altitude,
larger individuals showed lighter coloration, espe-
cially at low altitudes. There were some differences
between sexes, males having more vivid coloration.

Darker dorsal coloration at higher altitude has
been observed in other animals (see Introduction).
The ‘thermal melanism hypothesis’ states that darker
coloration provides benefits in terms of body warm-
ing (Clusella-Trullas et al., 2007). For instance, in
Chamaeleo spp. and Sceloporus spp., when tempera-
ture is low, pigments are dispersed through the entire
cytoplasm, darkening the skin and improving ther-
moregulation (Walton & Bennett, 1993; Sherbrooke,
Castrucci & Hadley, 1994). Consequently, darker indi-
viduals have thermal advantages under cold condi-
tions, implying shorter periods of thermoregulation
and increasing time available for other activities,
which increases success in feeding opportunities,
mates, defending territories and in escaping from
predators (Clusella-Trullas et al., 2007). This advan-
tage would make darker individuals in cold environ-
ments (e.g. in alpine habitats) larger and show better
body condition than lighter individuals of the same
population (Luiselli, 1993, 1995). Our results are con-
sistent with this hypothesis, as populations where
individuals showed darker skin (lower lightness
values) were located at altitudes with the lowest
temperatures. However, studies in a variety of lizard
species on the relationship between coloration and
warming rates have found mixed results, some failing
to find a relationship (e.g. Herczeg, Török & Korsós,
2007), while other found that melanic lizards heated
up faster than lighter lizards (e.g. Clusella-Trullas
et al., 2009).

An alternative, non-exclusive, hypothesis is that
dorsal darkness results from the selective pressure of
UV radiation. UV radiation is more severe at higher
elevations (Sola et al., 2008) and may produce damage

Table 1. Results of mixed effects linear models (ANOVA
test; F-values) for each dorsal colour component

d.f. F-value P value

Back lightness
Altitude 5, 341 16.52 < 0.01
Body size 1, 341 8.90 < 0.01
Sex 1, 341 2.80 0.10
Altitude×Size 5, 341 3.38 0.01

Back chroma
Altitude 5, 345 19.06 < 0.01
Body size 1, 345 0.64 0.42
Sex 1, 345 11.46 < 0.01

Back hue angle
Altitude 5, 345 8.77 < 0.01
Body size 1, 345 0.01 0.91
Sex 1, 345 2.65 0.10

Colour components were included as dependent variables
(lightness, chroma, hue angle), altitude and sex as fixed
factors, and body size as covariate. The linear model was
corrected for random factors including year and month.
Only significant interactions are included.
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at different levels (see Introduction). In fact, higher
reflectance of the skin is common in desert lizards
(Porter & Norris, 1969). Accordingly, correlation
between average skin lightness at the level of popu-
lation and UV radiation intensity was significantly
negative, darker individuals (low values of lightness)
being found where UV radiation was highest, at high
altitudes. The negative correlation between plant
cover and dorsal coloration that we found may help to
discern between the ‘thermal melanism hypothesis’
and the ‘protection against UV radiation hypothesis’.

The ‘thermal melanism hypothesis’ would predict a
positive correlation between covering and dorsal col-
oration, as in zones with higher plant cover, lizards
face a cooler environment (Iraeta et al., 2010), and
would need to heat up faster, darker lizards therefore
having an advantage. On the other hand, the ‘protec-
tion against UV radiation hypothesis’ would predict a
negative correlation between plant cover and dorsal
coloration, given that in more open zones lizards
would be more exposed to radiation and darker
lizards would have an advantage. Therefore, we

N = 46

N = 46

N = 46

N = 45

N = 45

N = 45

N = 38

N = 38

N = 38

N = 68

N = 68

N = 68

N = 67

N = 67

N = 67

N = 76

N = 76

N = 76

Figure 2. Mean values and standard error bars of dorsal coloration components (lightness, chroma and hue angle) of
Psammodromus algirus in six populations (altitude; m.a.s.l.) along an elevation gradient in Sierra Nevada (south-east
Spain). Sample size (N) is given below the mean value.
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Figure 3. Dorsal lightness variation with body size (PCA factor of mass and snout–vent length) for each of six
populations (i.e. altitude in m a.s.l.). Regression lines are represented for each altitude with lightness as dependent and
body size as independent variable.

Table 2. Correlation (Spearman’s correlation) matrix for mean values of components of lizards’ dorsal colour [lightness
(L*), chroma (C*) and hue angle (H*)], environmental temperature (Te, in °C) during the active season, ultraviolet B
radiation (UV-B, in μW cm−2 nm−1), percentage vegetation cover (%VC) and substrate coloration for each altitude
(corresponding to the studied populations)

Altitude
Back
L*

Back
C*

Back
H* Te UV %VC

Substrate
L*

Substrate
C*

Back L* −0.77
0.07

Back C* −0.94 0.89
< 0.01 0.02

Back H* −0.94 0.83 0.89
< 0.01 0.04 0.02

Te −0.94 0.83 0.89 1.00
< 0.01 0.04 0.02 < 0.01

UV 0.94 −0.83 −0.89 −1.00 −1.00
< 0.01 0.04 0.02 < 0.01 < 0.01

%VC 0.43 −0.83 −0.60 −0.60 −0.60 0.60
0.40 0.04 0.21 0.21 0.21 0.21

Substrate L* −0.83 0.54 0.77 0.77 0.77 −0.77 −0.14
0.04 0.27 0.07 0.07 0.07 0.07 0.79

Substrate C* 0.77 −0.20 −0.60 −0.60 −0.60 0.60 −0.14 −0.71
0.07 0.70 0.21 0.21 0.21 0.21 0.79 0.11

Substrate H* −0.94 0.60 0.83 0.89 0.89 −0.89 −0.20 0.94 −0.83
< 0.01 0.21 0.04 0.02 0.02 0.02 0.70 < 0.01 0.04

Sample size was six populations. P values are given below the correlation coefficients. Significant values are shown in bold
type.
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suggest that the negative correlation between plant
cover and dorsal coloration tentatively gives support
to the ‘protection against UV radiation hypothesis’
rather than the ‘thermal melanism hypothesis’.

Other possible explanations for the altitudinal vari-
ation in dorsal darkness may be ruled out. First, in
other lizards, predation selects for darker colorations
that are more similar to substrate colour (Brown &
Thorpe, 1991; Vidal et al., 2007). Although substrate
darkened with altitude, dorsal lightness of lizards’
skin and lightness of substrate colour were not cor-
related, and thus this explanation was not supported.
Second, melanin has been related to improved immu-
nocompetence and higher resistance against parasites
and pathogens in different taxa (Wilson et al., 2001;
Burtt & Ichida, 2004; Moreno & Møller, 2006). We
have no data on how disease pressure varies with
altitude in our study system, but preliminary analy-
ses of immune response, measuring swelling foot
pads after phytohaemagglutinin injection (a standard
method to estimate cellular immune response,
Smits, Bortolotti & Tella, 1999), suggest that immune
response does not vary with altitude (F5,96 = 1.064,
P = 0.39; our unpubl. data). And third, dark coloration
may be a by-product of increased aggressiveness due
to high population density, as frequently occurs in
island lizard populations (Raia et al., 2010). Never-
theless, we can discard this possibility in our study
population, as the highest densities were found in
populations at mid altitudes (1200 and 1700 m a.s.l.;
Zamora-Camacho et al., 2013), and there were no
differences in coloration between mid and low alti-
tudes (where the least dense populations occur).

We observed slight sexual dimorphism in dorsal
coloration. Males had slightly more vivid colour than
females. These results could be explained by the
relationship of melanins and carotenoids with status
and aggressiveness (Badyaev & Hill, 2000). On the
other hand, note that males are more active than
females and they are more exposed to sunlight (Díaz,
1993). Therefore, another possibility is that males
accumulate more pigments (more saturated colora-
tion) to protect them from radiation, or to heat up
faster than females, and therefore to initiate activity
earlier.

Chromatic components of the colour (chroma
and hue) also varied with altitude. We tested whether
differences in substrate colour acted as selective
pressures favouring the noted variation (Macedonia,
Echternacht & Walguarnery, 2003). Substrate colora-
tion varied significantly with altitude, and lizard hue
was positively correlated with substrate hue among
populations. This finding suggests strongly that pre-
dation selects for lizards with dorsal colour similar to
substrate colour. Therefore, it seems that predation
selects for dorsal hue, while temperature and/or UV

radiation selects for dorsal lightness in our study
population.

In conclusion, this study shows that dorsal colora-
tion shifts in an altitudinal gradient in the P. algirus,
individuals from the highland populations being
darker than those from mid- and low-altitude popu-
lations. We proposed three possible but non-exclusive
hypotheses for this adaptation: the ‘thermal mela-
nism hypothesis’ (Clusella-Trullas et al., 2007), the
‘protection against UV radiation hypothesis’ (Porter &
Norris, 1969) and the ‘cryptic-coloration hypothesis’.
Our findings give more support to the ‘protection
against UV radiation hypothesis’, although the
‘thermal melanism hypothesis’ cannot be convincingly
ruled out. On the other hand, the ‘cryptic-coloration
hypothesis’ did not explain why lizards are darker
at high altitudes, but this hypothesis explained vari-
ation in dorsal hue with altitude. In short, we suggest
that P. algirus is adapted to a wide range of factors
and one of these results in a darker dorsal colour at
high altitude on a Mediterranean mountain.
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