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A B S T R A C T

Animal coloration plays a fundamental role in communication, camouflage, aposematism, mimicry and ther-
moregulation, and has strong implications for adaptation and diversification. Phenotypic plasticity of color traits 
can thus affect social, reproductive, antipredator, or thermoregulatory behavior and determining the causes and 
consequences of color change helps us understand evolution. In contrast to seasonal or ontogenetic color 
changes, physiological color change in response to fine-scale changes in environmental conditions has received 
less attention. Temperature-driven, rapid changes in coloration can have profound implications for ecophysi-
ology, particularly in ectotherms. Here, using a widespread color polymorphic lacertid, Podarcis muralis, we 
study the impact of temperature on the chromatic properties and perception of pigment- and structurally based 
coloration of different body regions. We subjected male and female adult lizards from different color morphs to 
two different temperature regimes: cold (25 →C) and hot (↑34 →C) temperature, and quantified color change in 
the dorsum, belly, throat and ultraviolet (UV)-blue ventrolateral patches using a spectrophotometer. We then 
applied visual modeling to assess color variation from the perspective of a conspecific and two visual predators. 
We show that despite minor differences in spectral reflectance metrics, temperature had no significant effect on 
how color patches are perceived by receivers. Moreover, temperature did not affect existing sex and morph 
differences in color properties, suggesting that the minor changes we observed have little functional/adaptive 
consequences in this context. Contrary to results reported in other lizard taxa (iguanians and geckos), our 
findings suggest that temperature-induced rapid visual color change is unlikely in this lacertid species.

1. Introduction

Animal colors play important roles in communication, camouflage, 
aposematism, thermoregulation, and protection from the environment, 
and have strong implications for adaptation and diversification (Caro, 
2005; Cuthill et al., 2017; Stevens, 2013). Phenotypic plasticity of color 
traits can thus affect social, reproductive, antipredator, or thermoregu-
latory behavior and determining the causes of color change helps us 
understand evolution (Cuthill et al., 2017). In contrast to seasonal or 
ontogenetic color changes (i.e. morphological changes), physiological 
color change occurs rapidly, in seconds to minutes, and responds to 
fine-scale changes in conditions such as acute stress, background color, 
social interactions, or temperature (Caro et al., 2016; Cooper and 
Greenberg, 1992; Duarte et al., 2017; Figon and Casas, 2018). For 
example, in laboratory experiments, within 15–30 min of exposure, the 
coloration of fiddler crabs (Uca panacea) became lighter on a white 

background and when exposed to high temperature, and it became 
darker on a black background and at low temperature (Kronstadt et al., 
2013). Similarly, in under 4 min, dorsal and lateral surfaces of water 
anoles (Anolis aquaticus) brightened substantially in response to a mild 
stressor (Boyer and Swierk, 2017) while green anoles (A. carolinensis) 
change body color between brown and green within seconds multiple 
times during social interactions (Greenberg and Crews, 1990; Horr et al., 
2023).

Ambient temperature is a factor of special relevance for ectotherm 
ecophysiology (Angilletta et al., 2002). Since dark (i.e. low-reflectance) 
colors heat up faster than light (i.e. high-reflectance) colors, plastic color 
change can serve to increase or decrease heat absorption from the 
environment, facilitating thermoregulation in thermally heterogeneous 
habitats. Indeed, the thermal melanism hypothesis predicts that 
increased body temperatures will produce lighter colorations and lower 
temperatures will produce darker colorations in ectothermic individuals 
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(Clusella Trullas et al., 2007). Despite thermal melanism yielding mixed 
empirical support, this prediction is intuitive and generally accepted, 
having implications in the fields of animal coloration and visual 
communication research.

From a research perspective, rapid color changes could affect the 
reliability of color measurements, especially when standardization of 
measuring conditions is not possible (e.g. in situ field measurements). In 
many signaling contexts, color variation correlates with some feature of 
the individual, providing different sorts of information (Cuthill et al., 
2017; Stuart-Fox and Moussalli, 2009), and thus conflating color change 
with color variation can lead to flawed conclusions. Unaccounted color 
plasticity may impact color quantification by adding uncontrolled 
variability to, for instance, repeated measurements of the same in-
dividuals made at different times (or environments) or to comparisons 
across individuals, populations and species, complicating their biolog-
ical interpretation (Romero-Diaz et al., 2022). Nevertheless, color con-
stancy of visual systems (i.e. the ability to perceive colors as relatively 
constant despite changes in illumination), and categorical discrimina-
tion of continuous color variation (Caves et al., 2018; Fleishman et al., 
2016; P!erez i de Lanuza et al., 2018; Szabo et al., 2021), for example, can 
minimize the perceptual effects of dynamic color changes. It is thus 
important to determine the impact of rapid responses to short-term 
environmental change from the perspective of relevant observers, if 
and when they occur.

Among ectotherms, lizards are an ideal model to study plastic color 
changes. Most lizards are diurnal and terrestrial and exhibit exceptional 
diversity in body colorations, which serve a wide variety of functions 
(Olsson et al., 2013). Physiological color changes have been described 
mainly in agamids (Madsen and Loman, 1987), anoles (Boyer and 
Swierk, 2017; Taylor and Hadley, 1970; Wuthrich et al., 2022), cha-
meleons (Stuart-Fox and Moussalli, 2008), iguanas (Norris, 1967) and 
phrynosomatids (Langkilde and Boronow, 2012; Zucker, 1989), which 
are all in the suborder Iguania, and in geckos (Vroonen et al., 2012), and 
thus the extent to which these responses can be generalized is unclear. 
Most colors are produced by a combination of specialized chromato-
phore cells that contain pigments which selectively absorb natural light, 
or nanoscale structures which selectively reflect or scatter light (Bagnara 
and Hadley, 1973; Ligon and McCartney, 2016; Olsson et al., 2013). As 
in other vertebrate ectotherms, physiological color change in lizards 
involves the mobilization (dispersion and aggregation) of pigments 
and/or the reorganization of nanostructures in dermal chromatophore 
units (Cooper and Greenberg, 1992; Hadley and Goldman, 1969; 
Teyssier et al., 2015).

The mechanistic basis of color production in different body regions 
can differ, as often does the combination of selective pressures these 
patches are under (Cooper and Greenberg, 1992; Stuart-Fox and 
Moussalli, 2008; Stuart-Fox et al., 2004). In general, dorsal coloration is 
affected by the degree of reliance on crypsis for predator avoidance and 
thermoregulatory needs (Gunderson et al., 2022; Romero-Diaz et al., 
2019; Rosenblum, 2006). Heliothermy is one of the main thermoregu-
latory strategies in diurnal lizards, and dorsal surfaces receive the 
highest exposure to solar radiation. In contrast, colors that are located 
ventrally or ventrolaterally are likely hidden from view most of the time 
and may be revealed only behaviorally, when adopting specific body 
postures (e.g. during basking or displays of social communication; 
Driessens et al., 2014; Hews and Martins, 2013; P!erez i de Lanuza et al., 
2016; P!erez i de Lanuza and Font, 2015). This difference in selective 
regime can make the stability or plasticity of color vary substantially 
among different body regions. For example, dorsal but not ventral skin 
reflectance in bearded dragons (Pogona vitticeps) changed significantly 
in response to temperature (Smith et al., 2016b). In the eastern fence 
lizard, Sceloporus undulatus, belly and throat patches shifted from green 
to blue hue in response to increasing temperatures but dorsal hue was 
unaffected (Assis et al., 2022; Langkilde and Boronow, 2012).

Here, we study whether the different colors shown by the European 
wall lizard (Podarcis muralis, family Lacertidae) exhibit rapid changes 

induced by temperature variation. This species is color polymorphic, 
with up to five color morphs, and is often the focus of visual signaling, 
behavior and ecology research (Abalos et al., 2025; Kawamoto et al., 
2025; Olsson et al., 2013; P!erez i de Lanuza et al., 2018; P!erez i de 
Lanuza et al., 2019; P!erez i de Lanuza and Font, 2015; P!erez i de Lanuza 
and Font, 2016). As in other lizards (e.g. Haisten et al., 2015; Kuriyama 
et al., 2017; Morrison et al., 1995; Taylor and Hadley, 1970), P. muralis 
skin coloration results from the combined action of three dermal chro-
matophore layers, from top to bottom: xanthophores, iridophores, and 
melanophores (Andrade et al., 2019). In both sexes, ventral scales 
exhibit one of three distinct colors (white, yellow, orange) or a mosaic 
pattern combining two colors (orange-white and orange-yellow), with 
differences in pterin and carotenoid content underlying morph differ-
ences (Andrade et al., 2019). Dorsal surfaces are iridescent green-brown 
(P!erez i de Lanuza and Font, 2016). Additionally, conspicuous ventro-
lateral ultraviolet (UV)-blue patches that overlap some of the outer 
ventral scales (OVS) are present in the flanks of males and some females 
(P!erez i de Lanuza and Font, 2015). Dorsal coloration seems to function 
primarily as camouflage and enables thermoregulation (Marshall et al., 
2015; P!erez i de Lanuza and Font, 2015; P!erez i de Lanuza and Font, 
2016; Tosini et al., 1992). UV-blue patches are good predictors of 
size-independent bite force and body condition (P!erez i de Lanuza et al., 
2014) and thus hypothesized to function as a social signal in opponent 
assessment of male fighting ability, yet their precise role in agonistic 
encounters is still unclear (Abalos et al., 2016, 2024b; Names et al., 
2019). Ventral coloration (belly and throat) does not seem to influence 
behavioral thermoregulation (P!erez i de Lanuza et al., 2016) nor is 
associated to alternative reproductive/behavioral strategies (Abalos 
et al., 2020) and its function, if any, remains elusive.

We experimentally tested the short-term effects of temperature on 
color patches from different body regions by measuring spectral 
reflectance of dorsal, ventral and ventrolateral color patches in adult 
lizards from both sexes and different color morphs. We then assessed 
whether any potential color changes may be perceived by conspecifics, a 
common avian predator (a raptor), or a saurophagous snake. Evidence of 
physiological color change in lacertids is scant. From the adaptive 
perspective of the thermal melanism hypothesis, we may expect 
temperature-induced rapid changes in color patches directly involved in 
thermoregulation and not in patches under selection for crypsis or social 
signaling, especially if these color changes increase or decrease the 
conspicuousness of the color patch. The absence of color changes, or the 
occurrence of color changes that are ultimately not discriminable by 
relevant receivers would instead suggest that P. muralis’ coloration is not 
affected by short-term changes in body temperature and that tempera-
ture is unlikely to impact color patch function.

2. Methods

In July 2024, we collected 16 adult (SVL ω55 mm) female and 40 
adult male P. muralis from a population in Llívia, in the Pyrenean plateau 
of la Cerdanya (Spain). Only lizards of pure ventral color were used in 
the experiment to avoid spectra that artifactually combine properties 
from multiple color patches (Badiane et al., 2017): 23 white, 25 yellow 
and 8 orange lizards. Lizards were placed individually in numbered 
cloth bags for the duration of the experiment and released at their exact 
point of capture within 3 days. Bags were moistened with water and kept 
in a dark fresh (23 →C) room.

2.1. Temperature treatment

We tested the short-term impact of temperature on color by 
measuring and comparing the coloration of each lizard after being 
exposed to two temperature treatments: “cold” and “hot”, in that order, 
since warming may produce faster color changes than cooling 
(Stephenson et al., 2017). We split lizards into two batches of 27 and 29 
lizards to treat and measure over 3 days. On the first day, we measured 
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the first batch of cold-treated lizards. On the second day, we measured 
the first batch of hot-treated lizards and the second batch of cold-treated 
lizards. On the third day, we measured the second batch of hot-treated 
lizards. In the “cold” temperature treatment, lizards were acclimated 
in a portable incubator (R-COM Juragon RX Suro), in dark conditions, 
until their body temperatures reached 25 ↓ 1 →C. Temperature within 
the incubator was monitored in real time using a wireless temperature 
and humidity sensor (RuuviTag bluetooth sensor, Ruuvi Inc.). In the 
“hot” temperature treatment, lizards were placed in an empty terrarium 
(60 ↔ 42.5 ↔ 29 cm) under direct sunlight until they reached a tem-
perature of 34 →C or above (average ↓ SD: 34.9 ↓ 0.7 →C), guaranteeing 
a minimum 8-degree difference between the two treatments. Hours of 
measurement and weather conditions (temperature, relative humidity, 
windspeed and solar irradiation) were similar on both days of outdoor 
treatment (Table S1). In previous studies with lizards, a 4 or 5-degree 
difference was enough to induce temperature-dependent color changes 
(Langkilde and Boronow, 2012; Stephenson et al., 2017). The mean 
body temperature of free-ranging P. muralis in the field is 33.8 →C (Bra”na, 
1991). In a laboratory photothermal gradient, their median preferred 
body temperature is 34.1 →C with a breath of 4.6 →C (Bauwens et al., 
1995). The hot treatment target temperatures thus represent the tem-
perature that lizards would select and maintain if they had unrestricted 
access to a full range of biologically relevant thermal conditions. 
Moreover, cold and hot target temperatures are within the natural range 
of body temperatures observed in the wild (Bra”na, 1991).

Lizards’ body temperatures were verified right before color mea-
surement (see below) with a handheld infrared (IR) thermometer 
(PeakMeter PM659B) set at an emissivity of 0.97 (Luna et al., 2013) 
(Table S2). Temperature measurements were taken at room temperature 
over a standardized background, while holding the lizard by the upper 
half of its body with one hand, with the thermometer’s laser pointed 
right above its cloaca at a distance of 10 cm (ε1 cm Ø spot). IR mea-
surements of body surface temperature strongly correlate with cloacal 
temperature obtained through contact thermometry, and thus they 
accurately reflect internal body temperatures in small-sized lacertids 
(Barroso et al., 2016; Luna et al., 2013).

2.2. Color measurement

We obtained reflectance spectra relative to a white standard (Spec-
tralon WS1) using a USB2000 spectrometer with a PX-2 pulsed xenon 
lamp and an R200-7-UV-VIS reflection probe (Ocean Optics Inc., Dun-
edin, FL, USA). The spectrometer averaged 20 spectral acquisitions, and 
we restricted analyses to the range 300–700 nm. We took measurements 
from four body regions: the throat, the belly, the dorsum and UV-blue 
patches in the outer ventral scales (“UV-blue OVS” henceforth) 
(Fig. 1). We measured i) the center point of the throat; ii) a homoge-
neously colored, and preferably central, scale within the first third of the 
belly (the most colorful part); iii) the midpoint between the front legs in 

the dorsum, avoiding dark lines or melanized spots; iv) and the 2nd UV- 
blue OVS of the right side of the lizard. If there were no clear or large 
enough UV-blue OVS on the right side, we would choose one on the left 
side. When P. muralis females present UV-blue patches, they are often 
too small to measure correctly (Badiane et al., 2017). This was also the 
case in our sample, and thus we only measured them in males. During 
measurements, we held the reflectance probe at a constant 90→ angle and 
a distance of 3 mm to the lizard’s surface with the aid of an entomo-
logical pin attached to the probe’s tip, nylon pinhead down. This 
resulted in a circular reading spot of under 2 mm in diameter (Badiane 
et al., 2017). We conducted two consecutive rounds of measurements for 
each lizard, obtaining a repeated measure of the exact same points to 
account for unexplained variance stemming from measurement geom-
etry (Johnsen, 2016), and used the average of the two measures in 
subsequent analyses. We measured the lizard’s temperature before each 
round of measurements to make sure it conformed to the target tem-
perature. In cases when it did not, we placed the lizard back into the 
incubator (cold treatment) or the sunlit terrarium (hot treatment) and 
waited for it to achieve the target temperature again.

We used the R package “pavo” (v. 2.9.0; Maia et al., 2019) to import 
and process spectral reflectance data. First, we zeroed negative values 
and smoothed spectra with a span of 0.1 using the prospec function of 
pavo. Second, we extracted colorimetric variables for hue, chroma and 
brightness that describe the shape of the spectral curves of the colors of 
these lizards (Badiane et al., 2017; Montgomerie, 2006). We measured 
hue as the wavelength of maximum reflectance (λpeak) in unimodal 
spectra with a narrow peak (i.e. the dorsum and UV-blue OVS), and as 
the wavelength at the midpoint between the minimum and maximum 
reflectance (λRmid) in spectra with a wide plateau (i.e. the throat and 
belly, which do not differ in peak location but in the wavelength range in 
which reflectance decreases) (P!erez i de Lanuza et al., 2019). We 
calculated UV chroma (CUV) and green chroma (CG) as the relative 
contribution of the 300–400 nm and 510–605 nm range to the sum of the 
relative reflectance over the entire spectral range (300–700 nm), 
respectively, and brightness (B) as the mean reflectance over the entire 
spectral range.

We also applied visual modeling to determine whether there were 
chromatic or achromatic differences between cold and hot color mea-
surements taking into account the visual perception system of conspe-
cifics and visual predators, namely, a bird and a snake (e.g. Abalos et al., 
2025; P!erez i de Lanuza et al., 2019). We conducted visual modeling 
according to the receptor noise-limited model developed by Vorobyev 
and Osorio (1998) to convert reflectance spectra into perceived colors 
represented in tetrachromatic color space. For conspecifics, we used the 
photoreceptor sensitivities (UVS:SWS:MSW:LSW, 367:456:497:562 nm) 
and cone ratios (1:1:1:4) estimated for P. muralis (Martin et al., 2015), 
and a Weber fraction of 0.05 as suggested for amphibians (Siddiqi et al., 
2004). For avian predators, we chose the violet sensitive (VS)-averaged 
visual system available in pavo, which is representative of raptors 
(Accipitridae and Falconidae), as they are the most common avian 
predators of P. muralis (Martín and L!opez, 1990). We used cone ratios of 
1:2:2:4, and a Weber fraction of 0.1 (Vorobyev et al., 1998). For snakes, 
we used the photoreceptor sensitivities of a visually hunting whip snake, 
Masticophis flagellum (UVS:SWS:LWS, 362:458:561 nm), the cone ratios 
of Thamnophis sirtalis (1:2:17), and a Weber fraction of 0.1 (Macedonia 
et al., 2009; Sillman et al., 1997) to represent the visual system of sau-
rophagous colubrids known to predate on P. muralis in the area of study 
(e.g. Hierophis viridiflavus) (P!erez i de Lanuza and Font, 2015). In all 
cases, we assumed a “D65” standard daylight illuminant. We calculated 
bootstrapped chromatic and achromatic color distances in 
just-noticeable differences (JNDs) between cold and hot spectra for each 
body region, lizard color morph and sex, with 95 % confidence intervals 
(C.I.). Values ↑ 1 JND indicate that two colors are perceived as distinct; 
however, in practice, JNDs between 1 and 3 may be difficult to 
discriminate under non-optimal light conditions, and a more conserva-
tive threshold (↑3 JNDs) is frequently adopted (Marshall and Stevens, 

Fig. 1. Location of the four points for which we quantified color on a repre-
sentative adult male Podarcis muralis: a) throat, b) belly, c) dorsum, and d) UV- 
blue patches in the outer ventral scales (OVS). See text for details.
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2014; P!erez i de Lanuza et al., 2018; Siddiqi et al., 2004).

2.3. Statistical analyses

In R (v. 4.3.3; R Core Team, 2024), we ran linear mixed effects 
models (LMM) with the function lmer (package lme4, v. 1.1–27.1; Bates 
et al., 2015) using each of the four color metrics (hue, brightness and 
two measures of chroma) as dependent variables, “temperature” 
(cold/hot), “sex” (M/F) and “morph” (Y/W/O) as fixed factors, and 
lizard ID as a random effect to account for repeated measures of the same 
lizards. We conducted Tukey tests for post-hoc comparisons of signifi-
cant morph differences with the function glht (package multcomp, v. 
1.4–25; Hothorn et al., 2008) and confirmed that assumptions of linear 
regression, normality and homoscedasticity of residuals were met with 
normal Q-Q plots and Levene’s tests. We used a ranked weighted LMM to 
correct for violation of normality and homogeneity of variance for 
morph in the models for throat and ventral λRmid, and a weighted LMM 
to correct for heteroscedasticity in UV-blue OVS λpeak using the nlme 
package (v. 3.1–164; Pinheiro et al., 2023) and the weights argument.

3. Results

3.1. Temperature, sex and morph differences in spectral shape descriptors

We found no temperature effects on dorsal coloration for any metric 
(Table 1). The two sexes and three morphs significantly differed in 
dorsal hue (λpeak; sex: Х2

1 ↗ 10.05, P ↗ 0.001; morph: Х2
2 ↗ 11.82, P ↗

0.003), and green chroma (CG; sex: Х2
1 ↗ 10.01, P ↗ 0.001; morph: Х2

2 ↗
8.25, P ↗ 0.016) (Fig. S1). W lizards had dorsal λpeak at shorter wave-
lengths than Y and O lizards (Table 2), and so did males when compared 
to females (estimate ↓ S.E.: ↘14.2 ↓ 4.4 nm). W lizards showed higher 
CG than O and Y lizards (Table 2), and males had higher CG than females 
(Fig. S1).

We found temperature-dependent changes in throat coloration 
restricted to brightness (B; Х2

1 ↗ 5.08, P ↗ 0.024; Table 1, Fig. 2), which 
increased in hot lizards compared to cold (1.97 ↓ 0.36 %). In addition, 
we found sexual dichromatism in CG (Х2

1 ↗ 7.20, P ↗ 0.007) and B (Х2
1 ↗

8.07, P ↗ 0.004), with females being overall more reflective than males 
(CG: 0.01 ↓ 0.004 %; B: 1.9 ↓ 0.7 %) (Fig. S1). Morphs differed in three 
color metrics, namely, λRmid (Х2

1 ↗ 99.11, P ε 0.001), CG (Х2
1 ↗ 28.94, P 

ε 0.001) and B (Х2
1 ↗ 36.0, P ↗ 0.003) (Table 1, Fig. S1). Y and O lizards 

had longer throat λRmid than W lizards and O lizards had longer λRmid 
than Y (Table 2). All morphs differed in throat CG with Y lizards being 

the most reflective in this region of the spectrum, followed by W, which 
was more reflective than O (Table 2). W and Y lizards also had signifi-
cantly brighter throats than O lizards (Table 2).

Temperature affected both measures of chroma (CUV: Х2
1 ↗ 4.85, P ↗

0.028; CG: Х2
1 ↗ 6.47, P ↗ 0.011) and B (Х2

1 ↗ 10.86, P ε 0.001) of 
ventral coloration (Table 1, Fig. 2). Hot lizards showed reduced CUV 
(0.006 ↓ 0.002), and increased CG (0.004 ↓ 0.001) and B (1.36 ↓ 0.40 
%). We also found sexual dichromatism in both metrics of chroma (CUV: 
Х2

1 ↗ 12.57, P ε 0.001; CG: Х2
1 ↗ 23.39, P ε 0.001), and morph differ-

ences in all metrics except CUV (λRmid: Х2
1 ↗ 70.64, P ε 0.001; CG: Х2

1 ↗
31.11, P ε 0.001; B: Х2

1 ↗ 49.90, P ε 0.001; Table 1, Fig. S1). Females 
were more reflective in the UV region (0.028 ↓ 0.007), while less 
reflective in the green (↘0.025 ↓ 0.005), compared to males (Fig. S1). 
The O morph had longer λRmid compared to W and Y lizards, and Y had 
longer λRmid than W (Table 2). CG was highest in Y lizards, followed by W 
and O (Table 2). Consequently, both Y and W morphs were overall 
brighter than O (Table 2).

In males, temperature affected λpeak (Х2
1 ↗ 32.98, P ε 0.001), CUV 

(Х2
1 ↗ 17.53, P ε 0.001) and CG (Х2

1 ↗ 12.57, P ε 0.001) of UV-blue OVS 
but we found no morph differences (Table 1; Fig. 2). Hot lizards had 
λpeak at longer wavelengths than cold lizards (9.3 ↓ 1.3 nm), were less 
reflective in the UV (↘0.02 ↓ 0.004) and more reflective in the green 
(0.009 ↓ 0.002) region of the spectrum.

3.2. Perceived color differences

Visual models suggested that none of the rapid color changes re-
flected by metrics describing the spectral shape can be perceived by a 
conspecific observer or diurnal visual predators, such as a raptor or a 
whip snake (Fig. 3 and S3). In all body regions, JNDs for comparisons 
between cold and hot treatment colors in tetrahedral colorspace were 
either below 1 or exhibited bootstrap 95 % confidence intervals (C.I.) 
overlapping 1, with only one exception. Throat achromatic contrast 
between cold and hot measurements in W males was 3.18 JNDs (95 % C. 
I.: 1. 4, 5.0) to a conspecific lizard visual system.

4. Discussion

Temperature-driven, rapid changes in coloration have been 
described in some lizard taxa. Such color plasticity may affect social, 
antipredator, or thermoregulatory behavior (Dickerson et al., 2020; 
Geen and Johnston, 2014; Horr et al., 2023; Smith et al., 2016b), yet the 
causes and consequences of physiological color changes are seldom 
investigated (Figon and Casas, 2018). Here, using a color polymorphic 
lacertid lizard, we show that despite minor differences in metrics 
describing color spectral shape, temperature had no significant 
short-term impact on how color patches from different body regions are 
perceived by conspecifics or predators. Moreover, temperature did not 
affect existing sex and morph differences in color properties, suggesting 
that these dynamic changes have little to no functional consequences for 
wall lizards, at least within the context of our study.

Minor temperature-induced color changes mostly involved bright-
ness and chroma while patch hue across different body regions was 
largely unaffected (Table 1). Only in UV-blue OVS we found a slight shift 
toward bluer wavelengths in the hot treatment (Fig. 2). Interestingly, 
UV-blue OVS and belly patches, which show variation in their ultra-
structure (Andrade et al., 2019; E. Font unpub. data) and thus may differ 
in their color-producing mechanisms, showed similar changes in chroma 
in response to hot temperature. Both decreased and increased relative 
reflectance in the UV and green regions of the spectrum, respectively 
(Fig. 2). This suggests that the proximate mechanism of color change in 
response to temperature may be shared across types of colorations. 
Surprisingly, brightness of throat and belly patches, but not of dorsal or 
UV-blue OVS increased in hot compared to cold lizards. 
Environmentally-induced changes in brightness (or luminance) are 
more frequently reported in dorsal and/or lateral skin of lizards (e.g. 

Table 1 
Summary of the statistical significance found in LMMs for the variance associ-
ated to lizard ID and the effects of temperature, morph and sex on color metrics 
for each of the measured body regions. Asterisks indicate the level of signifi-
cance: ***P ε 0.001, **P ε 0.01, *P ε 0.05, ns ↗ not significant. See text for 
details.

Patch location Treatment Color metric

λpeak/λRmid CUV CG B

Dorsum lizard ID *** *** *** ***
temperature ns ns ns ns
sex *** ns *** ns
morph ** ns ** ns

Throat lizard ID *** *** *** ***
temperature ns ns ns *
sex ns ns ** **
morph *** ns *** **

Belly lizard ID *** *** *** **
temperature ns * * ***
sex ns *** *** ns
morph *** ns *** ***
lizard ID *** *** *** *

UV-blue OVS temperature *** *** *** ns
morph ns ns ns ns
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Cooper and Greenberg, 1992; Sherbrooke, 1997; Smith et al., 2016b; 
Vroonen et al., 2012). From an adaptive lens, more exposed patches may 
benefit more from color changing capacity to better meet the conflicting 
demands of camouflage, communication and thermoregulation func-
tions (Marshall and Stevens, 2014; Stuart-Fox and Moussalli, 2009). In 
contrast, here we found that the most exposed patches (dorsal skin and 
lateral UV-blue OVS) changed the least in brightness (Table 1).

Spectrophotometric readings offer an objective way to quantify color 
but need to be interpreted from a biologically relevant perspective that 
considers the ability of potential receivers to detect color differences. 

For example, the temperature-induced differences we found on color 
metrics for throat, belly and UV-blue patches were of smaller magnitude 
than intra-morph ventral color variation in this species (Aguilar et al., 
2021). While some of this intra-morph color variation (e.g. red vs. or-
ange) is partially discriminable by conspecifics, we found no evidence 
that temperature-induced color change can be perceived by other wall 
lizards nor by their main predators. The largest change we found was the 
throat patch in W males, which was distinguishable in achromatic terms 
between cold and hot lizards by conspecifics (Fig. 3), on account of 
changes to brightness. Temperature-induced changes in brightness 

Table 2 
Results from post-hoc Tukey’s multiple comparison test for color metrics of the dorsum, throat and belly of lizards to identify differences among morphs. Shown are 
mean differences (MD), standard errors (S.E.) and test statistics for all pairwise comparisons. ns: not significant.

λpeak/λRmid CG B

MD (S.E.) (nm) Z P MD (S.E.) Z P MD (S.E.) (%) Z P

Dorsum
W – O ↘19.5 (6.1) ↘3.20 0.004 0.024 (0.01) 2.28 0.057 ns ns ns
Y – W 10.5 (4.2) 2.53 0.030 ↘0.017 (0.01) ↘2.46 0.036 ns ns ns
Y – O ns ns ns ns ns ns ns ns ns

Throat
W – O ↘79.2 (4.9) ↘16.24 ε0.001 0.022 (0.006) 3.46 ε0.001 6.46 (0.97) 6.66 ε0.001
Y – W 46.5 (3.6) 12.83 ε0.001 0.014 (0.004) 3.34 0.002 ns ns ns
Y – O ↘32.7 (4.9) ↘6.70 ε0.001 0.035 (0.006) 5.71 ε0.001 5.98 (0.95) 6.26 ε0.001

Belly
W ↘ O ↘76.2 (6.6) ↘11.45 ε0.001 0.023 (0.007) 3.46 0.001 7.94 (0.93) 8.53 ε0.001
Y ↘ W 38.7 (5.0) 7.71 ε0.001 0.016 (0.005) 3.55 0.001 ns ns ns
Y ↘ O ↘37.4 (6.6) ↘2.62 0.023 0.040 (0.007) 5.97 ε0.001 7.03 (0.92) 7.63 ε0.001

Fig. 2. Mean ↓ S.E. spectral reflectance of four body regions in cold (T ↗ 25 ↓ 1 →C; blue) and hot (T ↑ 34 →C; red) lizards from orange (O), yellow (Y) and white (W) 
morphs. For clarity, different morphs and/or sexes are pooled in dorsum and UV-blue OVS, where all spectral curves are very similar. In the throat and belly, morphs 
are plotted separately. Where relevant, regions of Cuv and CG, and the λpeak for cold and hot lizards are indicated with dashed vertical lines. Sample sizes: 56 (dorsum 
and belly), 55 (throat), and 38 (UV-blue OVS) lizards.
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represented a ε2 % reflectance difference between cold and hot lizards, 
less than the 7 % change in dorsal mean reflectance reported in bearded 
dragons (Smith et al., 2016a, 2016b), and well under the 15–37 % dorsal 
reflectance change exhibited by horned lizards (Sherbrooke, 1997) in 
response to a change in temperature. Throat coloration has been asso-
ciated with mate choice and intrasexual competition in some lizards, 
acting as a sexual ornament (Olsson et al., 2013). However, despite 
several studies having been conducted, there is no evidence for a 
signaling role of throat coloration in P. muralis. Throat color is largely 
unrelated to body size, body condition and fighting ability (P!erez i de 
Lanuza et al., 2014), immunocompetence (Calsbeek et al., 2010), 
aggressiveness, space use and reproductive success (Abalos et al., 2020). 
White throats, in particular, are the least conspicuous of them all in their 
environments (P!erez i de Lanuza and Font, 2015), making the hypoth-
esis of a W-limited signal even more unlikely.

In the UV-blue patches, which may function as a social signal of male 
fighting ability, λpeak between hot and cold lizards differed by ε 10 nm 
on average (Fig. 2). This difference is within the natural range of vari-
ation in peak spectral sensitivities described for P. muralis’ photore-
ceptors (Martin et al., 2015) and much less than the change in hue (ω30 
nm) that results from iridescence on dorsal coloration (P!erez i de Lanuza 
and Font, 2016). In stark contrast, the blue patches of eastern fence 
lizards experience a near-100 nm shift in λpeak soon after a change in 
temperature of similar magnitude to the one used in this study (Assis 
et al., 2020). Accordingly, the relatively minor color changes that we 
found here were inconspicuous. Perhaps these small changes were 
simply the result of passive alteration of some temperature-sensitive 
elements of the skin’s ultrastructure, such as guanine crystals within 
iridophores, or of temperature-induced changes in the skin’s osmolarity 
(Morrison et al., 1996), which have shown to impact spectral reflectance 
in other lizards (e.g. lacertids: Kuriyama et al., 2017; San-Jose et al., 
2013; chameleons: Teyssier et al., 2015). The results from the visual 
modeling also indicated that there is substantial intrapopulation vari-
ability in the degree of plastic color change caused by temperature, 
which overall makes them unlikely to be perceived and used reliably in a 
signaling context.

Perhaps unexpectedly, we found no rapid changes in dorsal colora-
tion with temperature, notably in terms of brightness, which influences 
the rate of heating and cooling in ectotherms. The dorsum is the body 
part most directly involved in P. muralis heliothermic thermoregulation 
(Bra”na, 1991). There is striking intra-specific variation in dorsal color-
ation in this species, ranging from brown to bright green, within and 
across populations, which has been hypothesized to respond to climatic 
or microclimatic differences (e.g. Ruiz Mi”nano et al., 2024). In Anolis 
lizards, body color dynamically changes from green to brown in high 
and low temperature, respectively (Hadley and Goldman, 1969) and 
similar physiological darkening has been reported in other lizards and 
snakes in reduced temperatures (Cooper and Greenberg, 1992). In 
P. muralis, dorsal reflectance differences on account of color seem to 
contribute very little to individual heating rates (Tosini et al., 1992) and 
it is likely that the potential contribution of color to thermoregulation is 
negligible in comparison to other factors, such as body size (Herczeg 
et al., 2007), site selection, orientation or postural changes (P!erez i de 
Lanuza et al., 2016). However, temperature-induced changes in the 
near-infrared part of the spectrum (NIR, 700–2600 nm), which was not 
measured here, cannot be discarded. NIR reflectance is usually inde-
pendent from visible color (Stuart-Fox et al., 2017), it affects heating 
rates and thus could influence thermoregulation (Smith et al., 2016b; 
Stuart-Fox et al., 2017). Alternatively, dorsal coloration may be pri-
marily involved in other functions such as camouflage, or UV protection, 
for which rapid color changes may be less critical. For example, while 
bearded dragons dynamically change color to improve both thermo-
regulation and camouflage, they predominantly adjust for camouflage, 
suggesting a more critical role of crypsis-related than 
temperature-dependent changes (Smith et al., 2016a). Other environ-
mental factors such as changes in illumination, background coloration, 

Fig. 3. Chromatic and achromatic color distances in units of just noticeable 
differences (JNDs) between cold and hot color measurements as perceived by 
conspecifics (black circles), an avian predator (gray circles), and a sau-
rophagous snake (empty circles). The horizontal dashed lines indicate 1 and 3 
JNDs thresholds. Points indicate means and 95 % bootstrap C.I. distances by 
morph (O ↗ orange, Y ↗ yellow, W ↗ white) and sex (M ↗ male, F ↗ female). 
For overall JNDs between cold and hot coloration in each body region (pooling 
morph and sexes together) see Supplementary Fig. S2.
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environmental stressors, and hormonal activity (e.g. catecholamines, 
corticosterone) can induce physiological color changes in lizards 
(Cooper and Greenberg, 1992) and could be the focus of future studies.

The lack of evidence regarding rapid color change does not preclude 
the existence of color changes over longer timescales. For example, small 
temperature-induced changes could accumulate over time, or there may 
be seasonal or ontogenetic color changes. Long-term individual data 
indicates that P. muralis ventral coloration undergoes ontogenetic 
changes that can be perceived by conspecifics (Abalos et al., 2024a). 
Seasonal changes in dorsal coloration tracking shifts in background 
habitat have been reported in other Podarcis species (e.g. P. raffonei, 
Gambioli et al., 2024; P. sicula, Pellitteri-Rosa et al., 2020) and hy-
pothesized to be an anti-predatory adaptation. However, the cause, the 
magnitude and biological relevance of these changes is yet to be 
determined. More generally, the environmental causes and mechanisms 
of plastic color change, particularly in lacertids, need further testing.

Where present, sexual dichromatism and color morph differences 
were maintained under cold and hot temperatures, demonstrating that 
interindividual differences in P. muralis body color can be assessed 
reliably at room temperature (the most common setting in which color 
measurements are taken) and compared safely across thermal contexts. 
The perceptual stability of wall lizard body coloration at different 
temperatures within its natural range and to different observers in-
dicates that short-term, temperature-induced changes likely have little 
or no functional impact on thermoregulation, crypsis, or social 
communication. Instead, intraspecific variability of body coloration may 
more readily respond or be caused by alternative individual condition, 
environmental and historical factors, as is the case in other communi-
cation traits (e.g. Romero-Diaz et al., 2024), or mediated by mechanisms 
that take longer to cause an effect.
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