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Abstract 

 

Identifying species is an important task in biology, medicine, pharmacology, agriculture and 

biodiversity conservation. Modern taxonomy, the discipline devoted to the description and 

identification of species, faces a decrease in its workforce while dealing with the challenge of 

describing the Earth’s vanishing biodiversity. In this context, automated identification of species 

becomes of major importance. Automated image identification is a thriving field of machine learning, 

with deep learning algorithms based on convolutional neural networks revolutionizing the field in 

recent years. These methods are also taking their first steps in the identification of images of biological 

taxa in a variety of different contexts and taxonomic scopes. 

In this work, we took a deep learning approach to classify images of Iberian and North African wall 

lizards, a group of cryptic species in which identification requires expert intervention. We addressed 

two problems: 1) a two-class problem focusing on the distinction between two species, Podarcis bocagei 

and Podarcis lusitanicus and 2) a nine-class problem involving all the species currently described in the 

group. Three different deep learning architectures were tested in both cases. In the two-class problem, 

classification success was high, reaching as high as 97.1% and 95.9% for ensemble models applied to 

male and female lizards, respectively. Classification in the nine-class problem was not as successful, 

highlighting the difficulties inherent to this group of cryptic species. However, results improved when 

predictions from different perspectives were combined, reaching 95.3% and 89.7% for males and 

females, respectively. These results suggest the utility of deep learning algorithms in the identification 

of cryptic species, providing promising resources in the taxonomical, evolutionary and conservation 

research. 
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Sumário 

 

A identificação de espécies é uma tarefa importante na biologia, medicina, farmacologia, agricultura e 

conservação da biodiversidade. A taxonomia, disciplina que se dedica à identificação e classificação das 

espécies, enfrenta atualmente uma diminuição significativa do número de profissionais, enquanto 

abraça a tarefa de descrever a biodiversidade da Terra, altamente ameaçada. Neste contexto, a 

identificação automática de espécies torna-se particularmente importante. A identificação automática 

imagens é uma área científica em expansão, com os algoritmos de deep learning baseados em redes 

neuronais de convolução a gerar uma revolução neste campo nos últimos anos. Estes métodos têm 

também dado os seus primeiros passos na identificação de imagens de espécies biológicas em diversos 

contextos. 

Neste trabalho usou-se uma abordagem de deep learning para classificar imagens de lagartixas do género 

Podarcis da Península Ibérica e do Norte de África, um grupo de espécies crípticas cuja identificação 

requer a intervenção de peritos. Foram abordados dois problemas: 1) um problema de classificação 

binária focado na distinção entre Podarcis bocagei e Podarcis lusitanicus; 2) um problema com nove classes 

envolvendo todas as espécies atualmente descritas neste grupo. Testaram-se três arquiteturas de deep 

learning diferentes em ambos os casos. No problema binário, o sucesso de classificação obtido foi alto, 

alcançando os 97.1% e 95.9% no caso de combinações de modelos aplicados a imagens de machos e 

fêmeas, respetivamente. No problema com nove classes a classificação não foi tão bem sucedida, 

enfatizando as dificuldades inerentes à identificação de espécies crípticas, particularmente para casos 

como P. liolepis. No entanto, os resultados melhoraram consideravelmente combinando previsões 

obtidas da análise de diferentes modelos e perspetivas, chegando aos 95.3% e 89.7% para machos e 

fêmeas, respetivamente. Estes resultados sugerem a utilidade dos algoritmos de deep learning na 

identificação de espécies crípticas, constituindo recursos promissores na investigação em taxonomia, 

evolução e conservação. 
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1. Introduction 

This chapter consists of a brief description of the problem addressed in this thesis and of 

an overview of the thesis’ organization. 

 

1.1 Problem and motivation 

This work bridges two very different research areas: biology and computer science. 

Automated image classification is an active research field in computer science, and its 

developments have fuelled diverse applications in other scientific areas, including biology. 

In the biological sciences, however, automated image classification is far from being 

developed at its full potential, often because of the multidisciplinary nature of the task, 

which imposes challenges for a biologist with a regular training. Biological image 

automated classification can be especially helpful in two contexts, which are not mutually 

exclusive: i) one in which the data set is so large that processing images and making the 

identification by humans is very time-consuming and ii) one in which identification is 

particularly difficult and relying on expert knowledge or alternative techniques such as 

DNA sequencing, which are not practical or affordable at a large scale. 

This work falls mainly within the second context. The problem that will be tackled by this 

thesis is the automated identification of species of wall lizards (genus Podarcis) from the 

Iberian Peninsula and North Africa, based on a comprehensive image data set and using 

deep learning techniques. Wall lizards are a group for which traditional classification 

methods often fail and in which expert intervention and/or (most often) laboratory DNA 

sequencing are required for species identification. This is the first time that automated 

image classification techniques have been applied in this system.  

The motivation for this work is two-fold: 

1 – for practical purposes, identifying the species from the group analysed without the need 

for expert intervention will have strong positive repercussions in both subsequent research 

and monitoring (particularly of endangered species). 
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2 – in a more conceptual context, identifying what humans have so far been unable to 

clearly point out in this system (the features that distinguish species) is important in the 

study of how these and other species evolve. 

  

1.2 Organization of the thesis  

This thesis is organized in five chapters. In this first chapter, I provide a brief introduction 

to the topic and the thesis. Chapter two is dedicated to a review of the pertinent literature, 

focusing both on a biological scope, namely the definition of species and the challenges 

posed to taxonomists in present days, and a brief revision of the literature on automated 

image classification and convolutional neural networks, the tools of choice for this purpose 

in recent years. Chapter two finishes with a revision of studies where deep learning 

methods have been applied for the identification of biological species. In chapter three I 

present the biological system used and explain the methodological procedures adopted to 

tackle both classification problems addressed in this thesis. In chapter four I present the 

main results obtained. Chapter five consists of a discussion of the results obtained in the 

light of the current knowledge both on the methodologies applied and on the biological 

system under investigation. Finally, chapter six provides a brief conclusion about the work 

and offers future perspectives. 
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2. Literature Review 

 

This chapter provides a brief summary of the literature in the two main topics of this 

project: the identification of species, on one hand, and deep learning algorithms, on the 

other. A third section provides a bridge between these two main fields of knowledge, 

summarizing available studies applying deep learning tools for the identification of 

biological images. 

 

2.1 Identifying biological species 

 

2.1.1 The species problem 

The hierarchical Linnaean system is the framework used by biologists for the classification 

of life forms. It constitutes in grouping organisms in smaller and smaller groups, which are 

included within each other, to provide a hierarchical categorization of living diversity. Most 

levels in this classification system are artificial (that is, they are human constructions meant 

for categorizing and not meaningful natural entities). The only exception is perhaps the 

species, which is the basal category of Linnaean taxonomy. Despite the fact that the topic 

of the reality of species itself has been often debated in the scientific literature (see Hey et 

al., (2003) and references therein), most biologists today agree that species exist 

independently of human observers and that they correspond to real natural discontinuities.  

However, objectively defining and identifying species is a very difficult task, and the set of 

questions around this topic has been called the species problem in the evolutionary biology 

literature (Hey, 2001; Zachos, 2016). It is virtually impossible to use a single species 

definition criterion (usually called “species concept”) that is applicable to all life forms and 

situations. A recent review identifies about 30 different species concepts (Zachos, 2016), 

although many of them share the main idea of species as independently evolving lineages. 

Part of the difficulty comes from trying to impose a discrete classification on the outcomes 
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of a continuous evolutionary process. Recent views thus separate the problems of defining 

species, on one hand, and of practically delimiting them, on the other. Whereas the first is a 

conceptual problem, the second is a methodological one, and named species can be 

thought of as approximations of the real evolutionary entities (Ghiselin, 2001; Zachos, 

2016). 

 

2.1.2 The challenges of taxonomy 

Despite the conceptual difficulties associated to the definition of species, naming species is 

a task of utmost importance, and taxonomy – the field of biology concerned with the 

classification and naming of life forms – is considered as a fundamental discipline (Wilson, 

2004). First, biological research requires the use of a common system that can be used 

across all disciplines and between different researchers. Second, biological names are 

important in a variety of different contexts outside biological research: medicine, 

pharmacology, agriculture, in museum collections, in international trade regulations, and 

biodiversity monitoring and conservation. 

Taxonomy deals with the task of delimiting, identifying, and characterizing species. 

Traditionally this was done exclusively using comparative morphology or the study of other 

phenotypic characters (like calls in insects, birds, or amphibians). For the past decades, 

however, the use of molecular analyses (e.g. DNA sequencing) has opened new 

perspectives in the field, particularly, but not exclusively, in the case of cryptic species (that 

is, species that are morphologically very similar; Bickford et al., 2007). Recent approaches 

involve the so-called “integrative taxonomy” (Padial et al., 2010), which bridges different 

disciplines and techniques, including not only morphology and molecular investigations but 

also analyses of ecology analyses and reproductive isolation. 

Current taxonomic research faces several important challenges: first, the acknowledgement 

that the Earth’s biodiversity is far from completely described (it is estimated that less than 

20% of the world species have been described so far). Second, the fact that the Earth is 

facing its sixth (and largely human-induced) mass extinction (Ceballos et al., 2015) and that 

correctly cataloguing and providing tools for species identification is critical for the 

monitoring and preservation of biodiversity. Third, the well-known decrease of the 
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taxonomic workforce over the past decades, a problem known as the taxonomic impediment 

(Drew, 2011; Hopkins & Freckleton, 2002). One of the biggest constraints to the 

conservation of biodiversity is the lack of knowledge on species’ distribution ranges and 

their modifications over time, which in turn is related to a lack of experts to perform 

species identification. In this context, the need for automatic species identification has been 

stressed by different authors, and it is finally moving forward at a fast pace (see section 

2.2.3) (Gaston & O’Neill, 2004; MacLeod et al., 2010). 

 

2.2 Automated Image Classification 

 

2.2.1 A historical perspective 

Image Classification can be defined as the task of labelling images based on predefined 

classes (Rawat & Wang, 2017). It has been used for a wide variety of applications and it 

also constitutes the backbone of other computer vision tasks, such as object detection, 

localization, or segmentation (Karpathy, 2016). Although image classification is trivial for 

humans, it is a highly challenging task for a machine, since it requires generalizing well over 

the diversity typically exhibited within a class. In addition, there can be variations in 

perspective, scale or illumination, the background, partially covered or deformed objects, 

etc. (Ciresan et al., 2011; Sejnowski, 2018). 

For many years, the standard approach for image classification was a dual-stage procedure 

(Rawat & Wang, 2017): in a first stage, relevant features were extracted into descriptors, in 

a process involving a variable degree of human intervention; in a second stage, a classifier 

was applied to the features extracted. Feature extraction was highly laborious and time-

consuming, and often specific to each project (LeCun et al., 1998). 

The development of deep learning algorithms brought a major change in the field. Deep 

learning is a field of machine learning that focuses on learning high-level abstractions from 

data, circumventing the need for hand-designed feature extraction (Goodfellow et al., 2016; 

Guo et al., 2016). These methods experienced a major surge around 10 years ago, with the 
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onset of the so-called “deep learning revolution”. Deep learning algorithms were found to 

be suitable for handling big data with successful applications in diverse areas (Liu et al., 

2017). A turning point in Image Classification was when AlexNet (Krizhevsky et al. 2012) 

won the prestigious ImageNet Large Scale Visual Recognition Challenge (ILSVRC; 

Russakovsky et al., 2015). The object of this yearly competition is the ImageNet data set 

(Deng et al., 2009) which is a set of millions of annotated images developed for academic 

purposes.  

 

2.2.2 A brief survey on Convolutional Neural Networks 

Among the various deep learning methods (for a summary see (Guo et al., 2016) and (Liu 

et al., 2017)), those that have been more widely used for Image Classification are, without a 

doubt, Convolutional Neural Networks (CNNs). Neural networks are a type of machine 

learning algorithms that mimic the functioning of the animal brains. The next paragraphs 

briefly review the most important aspects of CNNs (for a more complete overview see e.g. 

Rawat & Wang, 2017). 

 

2.2.2.1 The basic architecture of a CNN 

CNNs are a type of neural network that processes data with a grid-like topology, such as 

images (Goodfellow et al., 2016). There are three major types of layers in a CNN, each of 

which plays a different role in the hierarchical structure: convolution layers, pooling layers 

(also called “subsampling layers”) and fully connected layers (see Figure 1). 
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Figure 1. The basic architecture of a CNN (from Guo et al., 2016). 

 

Convolution layers perform a convolution operation on the input using filter matrices (also 

called kernels). The convolution is an operation on two functions such that (in its discrete 

form): 

𝑠(𝑡) = (𝑥 ∗ 𝑤)(𝑡) = ∑ 𝑥(𝑎)𝑤(𝑡 − 𝑎)

+∞

𝑎=−∞

 

When dealing with two-dimensional inputs such as images (I) and two-dimensional kernels 

(K), this operation can be written as (Goodfellow et al., 2016): 

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) =∑∑𝐼(𝑚, 𝑛)𝐾(𝑖 − 𝑚, 𝑘 − 𝑛)

𝑛𝑚

 

 

The convolution thus performs a sliding weighted sum by moving the filter over the image, 

as shown in Figure 2: 
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Figure 2. Visual example of the convolution operation (from 

https://i.stack.imgur.com/RhEhb.png) 

 

The resulting matrix is called a feature map. This operation has very convenient properties: 

first, the process of sliding the filter along the image allows the algorithm to learn 

correlations among neighbouring pixels, which helps detecting interesting features in 

images (e.g. corners or edges). Second, this operation grants invariance to the specific 

location of the object. And finally, because the kernels are in general smaller than the input, 

there is a high degree of parameter sharing between different neurons, which makes the 

process more efficient than a typical neural network layer (Goodfellow et al., 2016; Guo et 

al., 2016).  

Usually, after a convolution layer, which includes only linear transformations, there is a 

non-linear activation stage (Goodfellow et al., 2016). The goal of this step is to make the 

process more generalizable to the (usually non-linear) nature of the data. Although various 

types of non-linear transformations have been proposed, the standard in machine learning 

applications is the Rectified Linear Unit (also called ReLU) activation (Nair & Hinton, 

2010; Zeiler et al., 2013). This transformation replaces all negative values by zero (while 

maintaining all non-negative values the same). 

Pooling layers subsample feature maps by replacing each group of neighbouring neurons by a 

summary statistic (Goodfellow et al., 2016;). This reduces the spatial resolution of the 

feature map, making the network more manageable, preventing overfitting and making the 

https://i.stack.imgur.com/RhEhb.png
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process more robust to noise (Guo et al., 2016; Liu et al., 2017; Rawat & Wang, 2017). Max 

pooling has become the standard in the field (Ciresan et al., 2011; Guo et al., 2016), 

although other kinds (e.g. average pooling) are also used. 

Finally, fully connected layers are typically the last in a CNN architecture and function as 

traditional neural networks. They are heavily parameterized (Guo et al., 2016). These layers 

convert two-dimensional feature maps into one-dimensional vectors and act as the 

classifier. For classification problems, the softmax activation is generally used (Rawat & 

Wang, 2017). The softmax is the generalization of the logistic regression classifier to a 

multiclass problem and is used to normalize the output of the previous layer to a 

probability distribution over n different classes (Goodfellow et al., 2016; Karpathy 2016).  

 

2.2.2.2 Training a CNN 

Training a CNN is a time-consuming and difficult task. As in other kinds of neural 

networks, training involves initialization of parameter values (filters and weights), 

propagating the information in a feed-forward manner through the various layers, 

obtaining predictions, calculation of the gradient of the error with respect to the 

parameters by backpropagation, and updating the parameters based on gradient descent; 

the process is then repeated for all images in the training set. Because of the very large 

number of parameters involved, typically in the order of millions, CNNs are prone to 

overfitting and require very large sample sizes, which are not always available. Therefore, 

various strategies have been developed to overcome problems associated with training: 

- Data augmentation artificially increases the number of images and creates noise in the 

data set by producing slight changes in the original images. Several techniques have 

been used for this purpose, such as shifting, rotating, zooming, cropping or flipping 

the image (e.g. Gómez-Ríos et al., 2019), or altering the intensities of the RGB 

channels (Krizhevsky et al. 2012), for example.  

- Dropout (Hinton et al., 2012) is a widely used technique that relies on stochastically 

deleting part of the neurons in each training example to prevent the co-adaptation 

of feature detectors and hence improve the generalization ability of the model 

(Baldi & Sadowski, 2013).  
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- Pre-training refers to the initialization of the training using weights and filters 

obtained from training the network using a different data set. This process, also 

called transfer learning, has been shown to accelerate the learning process and 

decrease overfitting (Guo et al., 2016). For example, various architectures pre-

trained from the ImageNet data set are freely available and are often used for 

different tasks. Typically, all layers of the model are initialized with the parameters 

obtained from pre-training, except the last fully connected layers, which are specific 

for the classification problem being addressed. Fine tuning of the parameters with 

respect to the specific task is then carried out. 

 

2.2.2.3 Examples of successful architectures 

Different architectures have been proposed to deal with the problem of image 

classification. The first CNN was LeNet (LeCun et al., 1998), a simple network consisting 

of 7 layers (with few channels each) but already including the fundamental aspects 

mentioned above. AlexNet (Krizhevsky et al. 2012), the first CNN winning the ILSVRC, 

was much more complex, involving 5 convolution layers and kernels with 192 channels, 

and 60 million parameters overall (Russakovsky et al., 2015). This complexity was handled 

using techniques to avoid overfitting, such as data augmentation and dropout. In 2014, two 

of the competitors to the ILSVRC brought important breakthroughs: VGG (Simonyan & 

Zisserman, 2014) and GoogLeNet (Szegedy et al., 2014). VGG shows two improvements 

from AlexNet: the network is much deeper, but the filters are smaller. GoogLeNet (the 

winner of the ILSVRC2014) takes the increase in the depth of the network even further, 

while decreasing the number of parameters via the use of a module called Inception, which 

applies innovative techniques (like a 1x1 convolution and the concatenation of 

simultaneous operations) to reduce the dimensionality of the problem while achieving very 

good accuracy. Inception V3 (Szegedy et al., 2015), another widely used architecture, is 

built on improvements of the Inception module. Another architecture that represented a 

major innovation in the field was ResNet (He et al., 2016), which won the ILSVRC in 

2015. This introduced the concept of residual learning, which involves adding identity 

mapping between some layers to improve backpropagation and minimize vanishing 

gradient problems, while also borrowing some concepts from Inception. Xception (Chollet, 

2017), inspired in Inception, introduced the concept of depthwise convolution. Inception-
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ResNet-V2 (Szegedy et al., 2017) combines the Inception architecture with residual 

learning, showing significant improvements both in training speed and in classification 

success. DenseNet (Huang et al., 2018) is another architecture that extends the idea of 

residual learning even further, creating connections between all the layers. Finally, another 

architecture worth mentioning is MobileNet (Howard et al., 2017), a lighter yet efficient 

architecture specific for resource-constrained environments such as mobile device 

processors. 

 

2.2.2.4 Deep learning explainers 

Deep learning algorithms are often considered black boxes; there is a trade-off between 

accuracy and explainability, and the deeper the algorithm the more obscure it is: high level 

features extracted from the models are typically not traceable or interpretable (Buhrmester 

et al., 2019). Consequently, a model may appear to be working but could be looking at 

completely irrelevant characters. For example, a classifier that was built to distinguish wolf 

and dog images was actually looking at the snow in the background to make predictions 

(Ribeiro et al., 2016); evidently, visualizing what a classifier is using is important to validate 

the results of the model before it is deployed and, in the case of classifiers involving human 

subjects, it is also an ethical imperative (Buhrmester et al., 2019). Several different 

explainers have been proposed in the field of Computer Vision (for a review see 

Buhrmester et al., 2019). Many of the proposed methods detect important pixels by 

analysing the effects of changing their intensity on the prediction (e.g Zeiler & Fergus, 

2014). A growingly popular method, particularly in the case of biological images (see 

section 3.2.3), is Grad-CAM (Selvaraju et al., 2017, 2020) – Gradient-Weighted Class 

Activation Mapping. This method uses the gradients of a class in a classification network 

flowing into the final convolution layer to produce a heatmap showing the visual 

localization of the important regions in the image involved in the classification. 
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2.2.3 Applications of deep learning algorithms in species identification 

As in other fields of knowledge, the easiness of obtaining digital photos has led to a huge 

increase of biological images as a potential source of data. This happens at a time when the 

number of taxonomic experts is decreasing and where monitoring biodiversity is more 

urgent than ever (see section 2.1.2; Wäldchen & Mäder, 2018). Although automated 

biological taxa identification is not yet a common task, there is a growing body of literature 

with examples of successful applications, particularly in the last two years (see Table 1). 

Several large scale identification tools are becoming more frequent (e.g.  Barré et al., 2017, 

Buschbacher et al., 2020), as well as freely available mobile applications for the general 

public (e.g. iNaturalist Seek (https://www.inaturalist.org/pages/seek_app), Flora Incognita 

(Mäder et al., 2021), Pl@ntNet (Affouard et al., 2017), or even non-specialized apps like 

Google Lens) which are changing biodiversity monitoring (Bonnet et al., 2020). In recent 

years, competitions aiming at image identification have also been promoted, such as 

LifeCLEF (www.imageclef.org) or the iNaturalist challenge (Van Horn et al., 2018; 

https://www.kaggle.com/c/inaturalist-2018).  

Wäldchen et al., (2018) point out some of the challenges of applying deep learning 

techniques to biological images: i) typically very high number of classes; ii) large 

intraspecific visual variation; iii) low interspecific variation; iv) the possibility of dealing 

with untrained taxa; v) the variation induced by the image acquisition process. The first 

problem can be handled by reducing the taxonomic scope, and the last can be dealt with by 

using specific protocols for image acquisition (e.g. Milošević et al., 2020). However, the 

other problems are common across different contexts and mostly unavoidable. 

One of the most challenging types of data set in biological image identification is that 

generated by camera traps (motion-activated cameras aimed at capturing secretive wildlife 

and that generate large quantities of very diverse images). One of the first studies using 

deep learning was precisely directed at this type of data set (Chen et al., 2014). Although 

that study in particular did not achieve a good classification accuracy (only around 38%), it 

still performed better than benchmark methods used at the time. Other studies of this type 

followed (e.g. Miao et al., 2019; Nguyen et al., 2017; Norouzzadeh et al., 2018). In 

particular, Norouzzadeh et al. (2018) performed a thorough study involving different 

architectures and approaches, obtaining high accuracy (maximum of 93.8% using 

https://www.inaturalist.org/pages/seek_app
https://www.kaggle.com/c/inaturalist-2018
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ResNet50) and showing that deep learning methods are a powerful tool that may alleviate 

the human burden of annotating images. 

Interestingly, very few of the studies analysed use or report pre-processing techniques, and 

only one, focusing on the very specific case of underwater images  (Gómez-Ríos et al., 

2019b), compares the effect of these techniques on the classification outcomes. This study 

found that deblurring, and contrast and brightness enhancement (CBE) slightly improve 

accuracy, while saliency decreases it.  

In general, and as expected, the data sets with the higher number of classes are those that 

generate a worse predictive ability (e.g. Hansen et al., 2020; Picek et al., 2020; Seeland et al., 

2019). To cope with relatively small sample sizes, many authors opt by using data 

augmentation techniques, which vary depending on the study. Curiously, the two studies 

performing a comparison of the utility of data augmentation do not agree: Hsiang et al., 

(2019) obtained worst results when using augmenting techniques whereas Gómez-Ríos et 

al., (2019b) report improvements in accuracy. Another technique that is almost standard is 

the use of transfer learning, usually by using parameters pre-trained from ImageNet. Again, 

one study found this option not to bring any advantage (Norouzzadeh et al., 2018) whereas 

another showed consistently improved results (Buschbacher et al., 2020).  

One interesting study in the context of this work, because of similarities in the dimension 

of the dataset and the sharing of similar goals, is Milošević et al., (2020). This study includes 

1846 images of midge larvae comprising 10 different species. The authors used a standard 

image acquisition protocol and ResNet50, with data augmentation and transfer learning, 

and obtained excellent results (99.5% at the species level). The authors used GradCAM 

(Selvaraju et al., 2020). This is the most popular explainer used in the reviewed literature; in 

fact, five other studies use the same method (Banan et al., 2020; dos Santos & Goncalves, 

2019; Lu et al., 2020a; Miao et al., 2019; Seeland et al., 2019a), albeit deconvolutional 

networks and saliency maps were also used (by Lee et al., (2015) and Lu et al., (2020), 

respectively).  

It should be noted that some of the studies reviewed only report validation accuracy, which 

is optimized during learning, and therefore success cannot be straightforwardly compared 

to those that report testing accuracy. 
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Nevertheless, although some reporting bias could exist, in summary most studies appear to 

be mostly successful (see reported accuracies in Table 1). 

 

Table 1. A summary of relevant articles using deep learning on biological images 

Reference Taxa 
Types of 
images 

Number of 
images 

Number of 
classes 

Improvements Accuracy Architecture 

Chen et al., (2014) Animals 
camera 
trap 

23876 20 DA 38.3 specific 

Lee et al., (2015) Plants standard 2816 44 DA, TLIN 98.1- 99.5 AlexNet 

Zhou et al., (2016) Trees standard 2358 25  87-91 LeNet 

Barré et al., (2017) Trees mixed 26624/6000/1526 184/60/32 DA 86.3-97.9 specific 

Gogul & Kumar, 
(2017) 

Plants field 8189/2240 102/28 TLIN 92-93 
Inception v3,  
Xception,  
Overfeat 

Nguyen et al., 
(2017) 

Animals 
camera 
trap 

30000/44536 3/6 TLIN 85-90 
Lite AlexNet, 
VGG16,  
ResNet50 

Marques et al., 
(2018) 

Ants 
(genera) 

standard 44806 57 TLIN 75-98 AlexNet 

Norouzzadeh et 
al., (2018) 

Animals 
camera 
trap 

301400 48 
DA, TLIN (not 
helpful) 

93.8 

AlexNet,  
NiN,  
VGG22,  
GoogLeNet, 
ResNet18,34,50,101,152 

Arzar et al., (2019) 
Butterflies 
(genera) 

Field 120 4 TLIN? 97.5 GoogLeNet 

Gómez-Ríos et al., 
(2019a) 

Coral Field 766/1123 14/8 DA, TLIN 98 
Inception 
ResNet50,152 
DenseNet121,161 

Gómez-Ríos et al., 
(2019b) 

Coral Field 409 14 DA, TLIN 85-93 
Inception, ResNet50,152, 
DenseNet121,161 

Hsiang et al., 
(2019) 

Foraminifera Standard 34640 36 
DA (not 
helpful) 

87.4 
VGG16 
DenseNet121 
Inception 

Miao et al., (2019) Mammals 
camera 
trap 

111467 20  83 
VGG16 
ResNet50 

Rauf et al., (2019) 
Cyprinids 
(fish) 

Standard 
438 (total, divided 
into 3 body parts) 

6  84-96 

AlexNet 
LeNet 
GoogLeNet 
ResNet50 
VGG16 
VGG32 modified 

dos Santos & 
Gonçalves, (2019) 

Fish Mixed ~9700 68 DA, TLIN ~88 Inception, others 

Seeland et al., 
(2019) 

Plants Field 117713 

1000 
species, 516 
genera, 124 

families  

DA, TLIN 82.2-88.4 Inception-ResNet-v2 
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Table 1. (cont.) 
 

Reference Taxa 
Types of 
images 

Number of 
images 

Number of 
classes 

Improvements Accuracy Architecture 

Almryad & 
Kutucu, (2020) 

Butterflies 
(genera) 

Field 9000 10 TLIN 79.5 
VGG16,19 
ResNet50 

Banan et al., 
(2020) 

Carps Standard 409 4 DA, TLIN 100 VGG16 

Buschbacher et 
al., (2020) 

Bees Standard 7595 124 
DA, CW, 
TLIN 

94 MobileNetV2 

(Hansen et al., (2020) 
Carabidae 
(Beetles) 

Standard 63364 291 TLIN 51.9-74.9 Inception v3 

Lu et al., (2020) Fish Standard 16517 10 DA, TLIN 75-98 VGG16 

Miele et al., (2020) 
Muridae 
(mice) 

Standard 1500 3 
TL, modern to 
fossil 

~100 
except 
fossils 

ResNet50-V2 

Milošević et al., 
(2020) 

Midges 
(insects) 

Standard 1846 10 DA, TLIN 99.5 ResNet50 

Picek et al., (2020) Snakes Mixed ~290000 783  <63 (F1) ResNet50-V2 

Raphael et al., 
(2020) 

Corals Field 5000 11 DA, TLIN 80.1 VGG16 

Notes: DA, data augmentation; TLIN, transfer learning from ImageNet; TL, transfer learning (not from ImageNet), CW, class 
weighting. Accuracy is shown as a % (note one case where F1 was reported instead) 
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3. Methodology 

 

This chapter describes the methods adopted in this work, starting with a brief introduction to the 

model system, a description of the data set, and then more particular aspects of the workflow. 

 

3.1 The model system: Iberian and North Africa wall lizards 

Wall lizards (genus Podarcis) are a group of small diurnal lizards that have a circum-

Mediterranean distribution. Currently the genus comprises 25 species (www.reptile-

database.org), although taxonomic revisions are ongoing (e.g. Caeiro-Dias et al., 2021) and 

this number is clearly an underestimate. Within this genus, several evolutionary and 

geographic coherent groups have been identified: this is the case of the Iberian and North 

African group, also known as the Podarcis hispanicus complex, a clade of several closely-

related species that started to diverge around 7.5 million years ago (Salvi et al., 2021).  

The species belonging to the Iberian and North African group are overall very similar 

morphologically, and the large intraspecific diversity overwhelms interspecific differences 

(Kaliontzopoulou, et al., 2012b). Because of this difficulty, external morphology is usually 

not considered a reliable indicator to distinguish species. The identification of evolutionary 

units, the description of species and the assessment of distribution maps in this group have 

been based mostly on genetics and/or conducted by highly experienced observers (Caeiro-

Dias et al., 2018; Geniez et al., 2007; Kaliontzopoulou et al., 2012b; Renoult et al., 2010). 

Because these lizards are frequently used as models for evolutionary, ecological, 

physiological, and parasitological studies, and because at least one species (P. carbonelli) is 

endangered and requiring careful distribution monitoring, the need for genetic analysis or a 

taxonomic expert identification is an urgent necessity. 

Nowadays, seven species are recognized in international databases: P. bocagei, P. carbonelli, P. 

guadarramae, P. hispanicus, P. liolepis, P. vaucheri and P. virescens; two more will be added in the 

near future (P. lusitanicus; Caeiro-Dias et al., 2021) and P. tunesiacus (Faria et al. in 

preparation). Further candidate species may exist inside some of the taxa, although these 

will not be analysed in the present study. 
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3.2 Description of image data 

The images that have been used as input for this work were obtained between 2005 and 

2015 in the scope of two PhD theses (Caeiro-Dias, 2018; Kaliontzopoulou, 2010). These 

images are as standardized as possible (e.g. the same perspectives were generally taken for 

all individuals against a low complexity background) but they include substantial format, 

zoom, illumination and exposure differences as well as positional variation and 

deformation given that the animals were alive and moving when the photographs were 

taken. Part of the images were used for geometric morphometric analyses as well as for 

obtaining scale count data (e.g. (Kaliontzopoulou, et al., 2012b), but so far had not been 

used for a study of automatic classification. We used images from two perspectives: a 

dorsal view focusing on the whole body (the tail, which the lizards often autotomize, and 

which may or may not appear in the image) and a lateral close-up of the head. Figure 3 

represents examples of these two perspectives (before pre-processing) for the same 

individual. The sets also include both males and females. This genus exhibits marked sexual 

dimorphism, that is, males and females are frequently morphologically distinct, hence we 

considered each sex separately in the analyses. That is, for each problem addressed (see 

below), we analysed four datasets separately, corresponding to dorsal and head lateral 

images, and males and females for each perspective. 

 

 

Figure 3. Example of a dorsal (left) and head lateral view (right) for the same individual. 

 

The sets include individuals from the nine classes mentioned in the previous section, 

coming from different collection localities (ranging from 4 to 21 localities per class, with 
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this number higher in species with a larger geographic distribution). The “locality” label 

was ignored in this work, but it adds to the natural variability of the data examined.  

Table 2 shows the composition of the data set. 

 

Table 2. Number of images per class, sex and view. 

 Females Males 

View Dorsal Head_lateral Both Dorsal Head_lateral Both 

P. bocagei 168 171 167 210 214 210 

P. carbonelli 96 95 95 108 108 108 

P. guadarramae 49 49 49 63 63 63 

P. hispanicus 31 31 31 41 41 41 

P. liolepis 71 65 65 73 69 69 

P. lusitanicus 76 76 76 98 99 98 

P. tunesiacus 49 51 49 61 61 61 

P. vaucheri 206 233 202 216 241 215 

P. virescens 186 186 185 205 205 205 

TOTAL 932 957 919 1075 1101 1070 

 

3.3 Image pre-processing 

The vast majority of the original images were already similarly oriented (that is, snouts 

pointing to the right), so we chose to maintain this feature to reduce complexity. Therefore, 

the first pre-processing step involved rotating or horizontally flipping the few images not 

conforming to this trend. After this, images were centered, cropped, converted to square 

format and resized to the same dimensions using the ImageMagick 7.0.10 software (The 

ImageMagick Development Team, 2021). This process was fairly automatic, but images 

were carefully checked (and manually corrected when needed). Although background 

removal is not mandatory for this type of analysis, many images included hand-written 

labels in the background which were likely to influence classification outcomes (e.g. 

different numbers were used for different species). Instead of manually manipulating 
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individual images to remove such labels, we opted by removing the background from all 

images. This was performed automatically using Adobe Photoshop 2021 

(https://www.adobe.com/pt/products/photoshop.html) in batch mode, with some 

manual corrections when needed. 

 

3.4 Analytical procedures 

We addressed two main problems in this thesis: 1) a simple two-class problem: the 

distinction between two of the target species, P. bocagei and P. lusitanicus; and 2) a more 

complex nine-class problem: distinguishing all the recognized species in the Iberian clade. 

Because the methods for each problem were slightly different (although the same overall 

framework was used), we detail each workflow separately. All representative scripts have 

been deposited in Github (https:/github.com/catpinho). 

 

3.4.1 Distinction between P. bocagei and P. lusitanicus 

This species pair was chosen for this initial analysis because the two species occur together, 

often in the same walls, throughout the northwest of the Iberian Peninsula. Hence, 

distinguishing between them is often of practical interest since the place of collection cannot 

help in this case (as it often does with other species). Moreover, although generally similar, 

as any other species in the genus, these two in particularly show important differences in 

size, coloration and head shape (Gomes et al., 2016; Kaliontzopoulou, et al., 2012a), which 

makes them good candidates to assess the usefulness of computer vision models.  

All procedures described below were conducted in the exact same manner for all four 

datasets. Prior to analyses, datasets (including 244 to 313 individual photographs from both 

species) were divided into five folds of the same size, maintaining class frequencies, based 

on which we created the data sets for five-fold cross validation; three folds (60% of images) 

were used for training, one-fold (20%) for validation and model parameter tuning during the 

learning process, and the remaining 20% were left unseen by the model for testing after the 

learning stage was completed.  

https://www.adobe.com/pt/products/photoshop.html
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We used the deep learning library Keras (Chollet et al., 2018) with TensorFlow (Abadi et al., 

2016) as backend in Python 3.8. This is the most common framework for deep learning 

image classification problems, enabling simple and streamlined workflows. 

Images were loaded with size 224 x 224 pixels. We used data augmentation in the training 

datasets since initial experiments suggested it greatly reduced overfitting. Besides rescaling 

the data so that all values fall between 0 and 1 (which is a common procedure also to 

validation and testing datasets), data augmentation parameters were set as follows: 

rotation_range = 70, width_shift_range = height_shift_range = shear_range = zoom_range 

= 0.2, brightness_range between 0.5 and 1.5. We did not augment data by flipping images 

since our dataset did not vary in this respect (see comment above about image orientation). 

We chose three architectures for this work based on the literature review: InceptionV3, 

ResNet50 and InceptionResNetV2, all of which directly available in Keras. We initialized 

the models with weights pre-trained from ImageNet, a common practice in the field. The 

top fully connected layers were not imported. Instead, we added to the base model an 

average pooling layer, followed by a fully connected layer with 1024 units and ReLu 

activation, a 0.5 dropout step and a final classifier of a single unit using the sigmoid 

activation (for our binary classification problem). For all cases training was carried out using 

the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 0.0001 (although in 

preliminary tests we experimented with different learning rates). A binary cross-entropy loss 

function was used. The learning process was conducted for 1000 epochs and with a batch 

size of 32. Because the classes in our datasets are unbalanced and preliminary runs showed 

an advantage in this procedure, class weights were used during model fitting to ensure that 

the lower frequency class (P. lusitanicus) receives more “attention” of the algorithm during 

the learning process. This was ensured by using the “balanced” heuristic in python module 

scikit-learn’s compute_class_weights function and providing resulting weights during 

training. The classification success of validation data set for each cross-validation replicate 

was monitored during the learning stage. After training, learning curves for both the training 

and validation data sets were inspected using TensorFlow visualization toolkit TensorBoard. 

The models obtained at the end of the 1000 epochs were used to make predictions and 

evaluate the performance of the methods on each test set. A vector of probabilistic 

predictions for the whole data set (combining predictions for all five cross-validation 
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replicates) was then used to calculate performance metrics (accuracy, the area under the 

receiver operating characteristic (ROC) curve, AUC and F1-score for each class) for each 

type of model. When necessary, these measures were compared using non-parametric tests 

(Mann-Whitney-Wilcoxon tests in the case of independent samples – between data sets – 

and Wilcoxon signed-rank tests in the case of comparisons involving the same cross 

validation replicates, that is, within data sets). 

We further explored the possibility of using ensemble models to classify images. To this 

purpose, we combined the predictions of models for each image by calculating the 

arithmetic mean of the probability for each class across the three different models. Finally, 

we went a step further and, for all individuals for which our data set included both dorsal 

and head lateral images, we combined the estimates in order to produce a more 

representative prediction. This was done in two different ways: 1) calculating the arithmetic 

mean of the probability for each class across all six models (three architectures for each of 

the two views); 2) using only the predictions obtained for the model with the best 

performance for each perspective and combining the two estimates as above. 

Finally, Grad-CAM (Selvaraju et al., 2017, 2020) was used to produce heatmaps showing the 

areas of each training image that are important in classification. This was performed for the 

best-performing model in each case. We followed the implementation suggested in 

https://keras.io/examples/vision/grad_cam/, with some minor modifications. 

 

3.4.2 Distinction between the nine species in the Iberian and North 

African clade 

The overall workflow was highly similar to the methodology adopted for the two-class 

problem detailed in section 3.4.1. We used the same cross.validation set up (60% for training 

+ 20% for validation + 20% for testing) and the same three architectures (InceptionV3, 

ResNet50 and InceptionResNetV2) pre-trained from ImageNet, with the same structure 

except, of course, for the final layer (9 units, and using the softmax activation function to 

produce the final predictions). However, there were important differences, of which we 

highlight:  

https://keras.io/examples/vision/grad_cam/
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1) the data augmentation protocol was adjusted. Because initial experiments suggested 

overfitting was still a problem (training accuracy was always much higher than 

validation accuracy), we increased the diversity in the data presented to the model by 

increasing the range of some data augmentation parameters, namely 

width_shift_range, height_shift_range, shear_range and zoom_range, which were 

increased to 0.7, and brightness_range, which was established between 0.2 and 1.8. 

This methodology was applied in only three out of the four data sets; in the female 

dorsal image set this data augmentation set up produced very low accuracies, in the 

order of 4 to 10% (results not shown; this test was performed only for a few rounds 

of cross validation for InceptionV3, the fastest-running model). Therefore, in the 

case of female dorsal images we used exactly the same data augmentation procedure 

used for the two-class problem. Comparisons involving this model are therefore not 

completely straightforward because of this difference. 

2) batch size was increased to 64 to reduce computational time, after verifying that no 

significant differences in accuracy were observed. 

3) number of epochs was increased to 2000 because the learning curves took longer to 

stabilize. 

Predictions based on model combinations were performed using the methodology 

described before for the two-class case (involving both each type of image for each 

individual and combinations of the two perspectives). 

Data evaluation in this case relied in determining accuracy and the F1-score for each 

class, as well as macro and weighted-averaged over classes. Confusion matrices were 

plotted in order to visualize classification dynamics.   
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4. Results 

 

4.1 Distinction between P. bocagei and P. lusitanicus 

The overall performance of the three methods for image classification of Podarcis bocagei 

and Podarcis lusitanicus in the four different datasets is shown in table 3. Detailed results 

including training, validation and test set evaluation for all cross-validation sets are shown in 

Appendix 2. Accuracy was generally high, ranging from 87.3% in the case of InceptionV3 in 

female dorsal images to 94.8% in male dorsal images when applying InceptionResNetV2. 

AUC ranges from 0.931 using InceptionV3 in female dorsal images to 0.984 using 

InceptionResNetV2 on both male dorsal and head lateral images. F1-scores show that 

typically P. lusitanicus was more mis-classified than P. bocagei, for both types of images and for 

both sexes. 

All three methods performed similarly in all data sets considering the three-performance 

metrics. 

Identification of males was generally more accurate than that of females. Considering all 

five cross-validation replicates of the three models, identification accuracy of males was 

significantly higher than that of females only when considering dorsal images (p=0.048, 

Mann-Whitney-Wilcoxon test). The same result was obtained, but even more pronounced, 

using other metrics (p=0.008982 and p=0.0298 for AUC and F1-scores, respectively). With 

respect to head lateral images the difference between sexes also exists but is significant only 

for differences in AUC (p=0.046, Mann-Whitney-Wilcoxon test). 

There was no difference in performance using different perspectives (dorsal or head lateral 

views), neither in the case of males nor females.  
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Table 3. Evaluation of the three tested architectures in the four datasets for the two-class 

problem. Models with the highest accuracy are highlighted in bold. 

Sex View Metrica Inception V3 ResNet 50 
Inception 

ResNetV2 

Males 

Dorsal 

Accuracy 

AUC 

0.935 

0.976 

0.922 

0.982 

0.948 

0.984 

F1 Pboc 0.951 0.941 0.962 

F1 Plus 0.905 0.887 0.919 

Head lateral 

Accuracy 

AUC 

0.926 

0.972 

0.929 

0.975 

0.936 

0.984 

F1 Pboc 0.946 0.947 0.953 

F1 Plus 0.882 0.895 0.889 

Females 

Dorsal 

Accuracy 

AUC 

F1 Pboc 

F1 Plus 

0.873 

0.931 

0.905 

0.810 

0.906 

0.965 

0.930 

0.857 

0.905 

0.970 

0.929 

0.859 

Head lateral 

Accuracy 

AUC 

F1 Pboc 

F1 Plus 

0.935 

0.962 

0.953 

0.897 

0.919 

0.959 

0.941 

0.87 

0.927 

0.976 

0.947 

0.872 

a. AUC refers to the area under the ROC curve. 

As an extension to this basic approach, we tested whether ensemble models (calculated 

by averaging predictions of different models) would increase classification success. These 

results are presented in table 4. Within each of the four data sets, ensemble models do not 

always improve classification success compared to the best single model. For instance, in the 

case of head lateral images prediction performance is worse with the ensemble model than 

when using the best performing model only. In the case of dorsal images, the improvement 

is very slight for males and more substantial for females.  

However, combining the predictions from different views results in a much higher 

classification success in all cases, particularly when using the combination of all six models 

available for a particular individual; in this case accuracy reaches as high as 97.1% for males 

and 95.9% for females. 
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Table 4. Assessing the utility of ensemble models for image classification in the two-class 

problem. 

Sex View Model Accuracy AUC F1 Pboc F1 Plus 

Males 

Dorsal 
Best single 0.948 0.984 0.962 0.919 

Ensemble 0.955 0.982 0.967 0.930 

Headlat 
Best single 0.936 0.984 0.953 0.889 

Ensemble 0.930 0.976 0.949 0.885 

Combined views 
Ensemble 6 models 0.971 0.997 0.979 0.953 

Ensemble 2 best 0.961 0.987 0.972 0.937 

Females 

Dorsal 
Best single 0.906 0.965 0.930 0.857 

Ensemble 0.943 0.970 0.958 0.908 

Headlat 
Best single 0.935 0.962 0.953 0.897 

Ensemble 0.911 0.972 0.937 0.847 

Combined views 
Ensemble 6 models 0.959 0.992 0.970 0.934 

Ensemble 2 best 0.947 0.977 0.962 0.912 

 

Grad-CAM heatmaps were produced only for the model showing the highest accuracy in 

each case (Inception ResNet V2 in the case of male dorsal and head lateral images, 

ResNet50 in the case of female dorsal images and Inception V3 in the case of female head 

lateral images). Visualization of the heatmaps confirms that the models were indeed 

considering lizard images for the classification and not external features (like human fingers, 

writings, shadows and other non-lizard elements that appear in some images).  

Examples of heatmaps used to discriminate the two classes are shown in Figure 4. In 

dorsal images the model often uses the middle area of the trunk (possibly due to the striking 

patterning) to discriminate the two classes, but the head region was also used (as well as 

both regions combined). In female dorsal images the head was not as used as the trunk, but 

the portion of the trunk used for discrimination was generally more anterior than in males. 

In both male and female head lateral images it was the area around the ear that was mostly 

used for correct classification, although this region could be more or less shifted towards the 

throat in both sexes. 
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Figure 4. Example of Grad-CAM heatmaps obtained for Podarcis lusitanicus. The upper 

images show two common patterns observed in male dorsal images (also found, albeit with 

some differences in females). The bottom images exhibit the patterns most frequently 

found in male and female head lateral images (here illustrated in two females). 

 

4.2 Distinction between all nine species in the Iberian and 

North African clade 

Overall, the performance of the different models for classification over the nine classes 

was worse than in the two-class case. Unlike runs involving only P. bocagei and P. lusitanicus, 

in all cases considering nine classes overfitting was very evident (see Appendix 2 for detailed 

training, validation and testing evaluation scores). This problem was minimized by 

experimenting with various options (varying the learning rate and batch size, changing data 

augmentation procedures, increasing the number of epochs, amongst other experiments) 

but it could not be completely overcome. Despite training accuracy rapidly arriving to a 

fixed value around 1, most validation and test set accuracies were well below this value 

(generally around 80% or even lower in the case of female images). In general, accuracies 
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ranged from 72.4% for InceptionV3 in female dorsal perspectives up to 85.3% for 

InceptionResNetV2 in male dorsal views. 

A summary of the performance of each model is presented in table 5 and more detailed 

information for each cross-validation pass are shown in Appendix 2. 

 

Table 5. Evaluation of the three tested architectures in the four datasets for the nine-class 

problem. Models with the highest accuracy are highlighted in bold. 

Sex View Metric Inception V3 ResNet 50 
Inception 

ResNetV2 

Males 

Dorsal 
Accuracy 

F1 macro 

0.849 

0.826 

0.832 

0.806 

0.853 

0.829 

Head lateral 
Accuracy 

F1 macro 

0.832 

0.811 

0.840 

0.817 

0.828 

0.807 

Females 

Dorsal 
Accuracy 

F1 macro 

0.724 

0.705 

0.766 

0.753 

0.738 

0.68 

Head lateral 
Accuracy 

F1 macro 

0.783 

0.744 

0.763 

0.727 

0.804 

0.775 

 

A striking result was the highly significant difference between male and female image 

identification accuracy, which holds for both types of images (p<0.0001 for all comparisons, 

both for accuracy and F1 score, Mann-Whitney-Wilcoxon test). On the other hand, there 

are no differences in performance between the two types of images, both for males and 

females. 

In terms of classification ability, models were very similar. There were no major 

differences between models in classification ability (the only significant difference was 

detected in female head lateral images, in which ResNet50 performed significantly worse 

than Inception ResNet V2 (p=0.0325 for both accuracy and F1-score, Wilcoxon signed rank 

test). 

To study how classification errors are distributed and investigate the contribution of 

different classes overall, we plotted the confusion matrix for each data set and model, as 
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well as the distribution of F1-scores across species. These results are presented in Figures 5-

8 (for the best model in each case). 

These results highlight that several species appear to be fairly well recognisable 

independently of the data set. P. carbonelli is a case in point, particularly for male images. The 

main problematic species are P. guadarramae and P. liolepis, and they appear to be the main 

reason why classification performance is overall only average. P. guadarramae is often 

mistaken for P. virescens or, to a lesser extent, P. lusitanicus or P. bocagei, depending on the 

image type, whereas individuals from P. liolepis are often confused with P. virescens or P. 

vaucheri (but also with other species). P. hispanicus is also not recovered consistently in some 

datasets, particularly in male images, with some confusion towards mainly P. vaucheri, or to a 

lesser extent P. liolepis, depending on the data set. 

An evaluation of ensemble models was also performed in this case. These results are 

shown in table 6. 

 

Table 6. Assessing the utility of ensemble models for image classification in the nine-class 

problem 

Sex View Model Accuracy F1 macro  

Males 

Dorsal 
Best single 0.853 0.829 

Ensemble 0.886 0.866 

Headlat 
Best single 0.840 0.817 

Ensemble 0.876 0.854 

Combined views 
Ensemble 6 models 0.935 0.923 

Ensemble 2 best 0.907 0.882 

Females 

Dorsal 
Best single 0.766 0.753 

Ensemble 0.817 0.790 

Headlat 
Best single 0.804 0.775 

Ensemble 0.830 0.802 

Combined views 
Ensemble 6 models 0.897 0.880 

Ensemble 2 best 0.866 0.844 
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Figure 5. Classification success for male dorsal images based on InceptionResNetV2 

results. Upper: confusion matrix normalized over rows; lower: a boxplot describing 

variation of f1-scores for different classes (based on five cross-validation test sets). 

Abbreviations used: Pboc, P. bocagei; Pcar, P. carbonelli; Phis, P. hispanicus; Plio, P. liolepis; 

Plus, P. lusitanicus; Ptun, P. tunesiacus; Pvau, P. vaucheri; Pvir, P. virescens. 
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Figure 6. Classification success for male head lateral images based on ResNet50 results. 

Upper: confusion matrix normalized over rows; lower: a boxplot describing variation of f1-

scores for different classes (based on five cross-validation test sets). Abbreviations as in 

Figure 5. 

 



31 

 

 

  

Figure 7. Classification success of female dorsal images based on ResNet50 results. Upper: 

confusion matrix normalized over rows; lower: a boxplot describing variation of f1-scores 

for different classes (based on five cross-validation test sets). Abbreviations as in Figure 5. 
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Figure 8. Classification success for female head lateral images based on Inception ResNet 

V2 results. Upper: confusion matrix normalized over rows; lower: a boxplot describing 

variation of f1-scores for different classes (based on five cross-validation test sets). 

Abbreviations as in Figure 5. 
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Unlike the two-class case, in which the utility of ensemble models was mostly restricted to 

the combination of predictions from different perspectives, without important 

improvements in the within-data set case, in the nine-class problem ensemble models 

greatly improve predictions in all cases, both when combining predictions within data sets 

(ensemble models always improve estimates from the best single model) but also, and most 

importantly, when using estimates from different views. In this case, prediction accuracy 

reaches as high as 93.5% for males and 89.7% for females, both in the case of combining 

the six models. As in the two-class case, combining only the best model for each 

perspective increases prediction accuracy but only modestly. 

Confusion matrices for the six-model ensemble for males and females are shown in figure 

9. These analyses highlight that the classification problems for some species were 

attenuated by the use of multiple predictions (e.g. for P. guadarramae); however, P. liolepis is 

still problematic, both for males and females, with images of this species being erroneously 

classified as P. virescens or P. vaucheri. The classification of P. hispanicus and P. lusitanicus 

improved only slightly in comparison to others. 

As for the two-class problem, Grad-CAM analyses show that typically the models use lizard 

– and not other – features for classification. However, even with the visualization tool 

available, it is not straightforward to evaluate what the model considers for discrimination. 

More precisely, the same regions seem to be used to classify distinct species, but it is not 

quite evident how differences in these regions are used. The most common patterns found 

for each species are summarized in Tables 7 and 8 (for males and females, respectively). 

Curiously, the tip of the snout is frequently used to classify female images, whereas this 

region is typically irrelevant in male images. 
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Figure 9. Confusion matrix for male (upper) and female (lowed) image classification based 

on a combination of predictions from the six models applied. Abbreviations as in Figure 5. 
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Table 7. Summary of Grad-CAM results for each class (males) 

 

P. bocagei 

Highly variable (no clear pattern). All portions of the dorsal 
views were equally used. In head images the area around the 
eye, the top of the head, the snout and the throat were all 
used in similar proportions. 

 

P. carbonelli 
Variable for both views. Snout and middle of the dorsum 
used in dorsal view. Top of the head most frequently (but not 
strictly) used in lateral view. 

 

P. guadarramae 
Whole body used for dorsal view (but variable); either throat 
(most common) or ear region used in head lateral views. 

 

P. hispanicus 
Variable. Anterior portion of snout used more frequently than 
in other species for both dorsal and head lateral views. 

 

P. liolepis 
Highly variable. Whole body used in most dorsal images, area 
around the eye and throat used in head lateral views, but 
other patterns common.  

 

P. lusitanicus 
Highly variable. All parts of the dorsum used (but frequently 
the most posterior part); area around the ear frequently used 
in head lateral images.  

 

P. tunesiacus 
Highly variable. Dorsal area near the insertion of the posterior 
limbs used more frequently than in other species; different 
regions of the head used, often simultaneously. 

 

P. vaucheri 
Highly variable. Different regions of dorsum (from head to 
the posterior region) used in dorsal images, all portions of the 
head, but most frequently the throat, used in lateral images.  

 

P. virescens 
Highly variable. All parts of both images used. Head and 
anterior part of the dorsum more used than in other species.  
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Table 8. Summary of Grad-CAM results for each class (females) 

 

P. bocagei 
Highly variable. Mid portion of the dorsum used frequently 
(although other areas as well). Tip of the snout used often, 
but area around the ear and throat are also relevant. 

 

P. carbonelli 

Variable. In the dorsal view, the region around the anterior 
limb insertion is frequently used. In the head lateral view, the 
tip of the snout is commonly used, as well as the most 
posterior region of the head. 

 

P. guadarramae 
Variable. Mid portion of the dorsum and tip of the snout are 
the regions used more frequently in dorsal and head lateral 
views, respectively. 

 

P. hispanicus 
Variable. Different regions of the dorsum, but all where the 
striped pattern is obvious, are used. Snout and/or top of 
posterior region of head used. 

 

P. liolepis 
Variable. Anterior part of the dorsum more used than other 
regions, whereas the tip of the snout is used in most head 
lateral images. 

 

P. lusitanicus 
Mid dorsum, in the dorsal view, and both snout and posterior 
side of the head (in head lateral views) frequently used. 

 

P. tunesiacus 
Variable. Posterior part of the dorsum more used than in 
other species; snout and top head region behind the eye used 
with some frequency. 

 

P. vaucheri 
Highly variable. All parts of the dorsum used in dorsal images, 
various parts of the head (but frequently snout and throat 
combined) used in head lateral images. 

 

P. virescens 

Highly variable. All portions of the dorsum used (but in 
generally small areas) in dorsal images, region around and 
behind the ear more used than in other species for head 
lateral images. 
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5. Discussion 

 

In this study, we proposed the application of deep learning algorithms to the identification 

of images belonging to closely related and morphologically similar lizard species. 

Taxonomically speaking, to our knowledge this is one of the first studies of the kind 

conducted in squamates, and the first not involving snakes. The objects of this study, wall 

lizards belonging to the P. hispanicus species complex, are common, widespread species 

frequently found across Iberia and the Maghreb, and have a long tradition of being a 

challenge for taxonomists because of the combination of low interspecific with huge inter-

individual morphological variation (Kaliontzopoulou, et al., 2012b). Studies focusing on 

automating the identification of other biological species face different challenges (e.g. the 

very high number of classes or of images), but to our knowledge no study had yet focused 

on distinguishing images of species that are so similar morphologically as the objects of this 

study. 

We conducted this study in a two-stage process: first we addressed a simple problem, both 

in the number of classes (only two) and in the degree of morphological differentiation 

(relatively high), and then moved on to a more complex problem involving nine classes 

including completely cryptic forms (that is, species that were only described based on 

genetics due to the impossibility of morphological distinction even by experts).  

 

High classification success in the discrimination between P. bocagei  and P. lusitanicus 

With respect to the first problem, the distinction between P. bocagei and P. lusitanicus, the 

performance of computer vision models was high. This was expected, since these two 

species show morphological differences that enable their distinction by experts (namely a 

smaller size, less intense green in the dorsum and flatter heads in the case of P. lusitanicus); 

however, compared to other species that have been the object of studies involving deep 

learning tools, they can still be considered fairly cryptic. In this context, the high 

classification success obtained in this study (from 90.4% in female dorsal to 94.8% 

accuracy in male dorsal images for single models, and as high as 97.1% and 95.9% for 
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males and females, respectively, using ensemble models combining results from the two 

perspectives) is comparable to the accuracies generally reported in similar studies (see Table 

1). It should be noted that we report testing accuracies and a large portion of the studies 

report validation accuracy, based on which the models are optimized during learning.  

 

The complex nine-class scenario 

When we moved to a more complex problem, the distinction of the nine species in the 

Iberian and North African clade, classification success dropped significantly. For single 

models, accuracy ranged from 76.6% to 85.3% for the best performing models applied to 

female dorsal and male dorsal images, respectively. Combining the predictions for each 

view increased this success to a moderate extent, and classification was highest when 

combining predictions from different views for the same individual using all six models 

combined (93.5% in the case of males an 89.7% in the case of females). Although these 

improvements were significant, these accuracies are still below those obtained for the 

simpler distinction between P. bocagei and P. lusitanicus.  

This result is largely led by the moderate to low ability of the models to classify certain 

species. In fact, whereas species such as P. virescens, P. bocagei or P. carbonelli are typically very 

successfully classified (particularly, but not only, in ensemble models), but individuals from 

other species are also frequently mistaken, and this is not completely solved by combining 

predictions from different models and views. P. liolepis, the Catalonian wall lizard, is a case 

in point. This is a species with a vast distribution throughout the eastern half of the Iberian 

Peninsula, likely one of the most widespread among those included in this study (see 

distribution map in https://www.eurolizards.com/lizards/podarcis-liolepis/). This 

probably means that this species encompasses a great deal of morphological variability 

resulting from adaptation or developmental plasticity to cope with widely different climatic 

conditions. Moreover, some southern populations are completely isolated from the 

remainder of the species, suggesting that genetic drift might accentuate differentiation 

among populations. Although overall morphological patterns might be diverse, P. liolepis 

individuals have simpler dorsal patterns compared to those that other species exhibit (A. 

Kaliontzopoulou, pers. comm). If these patterns are used by models to discriminate species 

(as it appears from Grad-CAM results), it may happen that this lack of complexity hampers 
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the identification of this species. Finally, unlike other lizard species, which tend to be more 

or less homogeneous genetically, P. liolepis includes two very distinct mitochondrial DNA 

lineages, one of them resulting from introgression with a now extinct form (Renoult et al., 

2009). It is possible that these complex evolutionary dynamics have left their mark on 

morphological variation, making P. liolepis more diverse, in some aspects, than other species 

of the complex. Coupled with the relatively low sample size available for this species 

(which nevertheless includes individuals from different, geographically widespread 

locations), these factors might result in a particularly difficult problem to be tackled by 

classification models. If this hypothesis is correct, increasing the sample size for this species 

in order to become more representative of intraspecific morphological variation could have 

a positive effect on classification outcomes. An also important probable reason for the 

misclassification of P. liolepis and other species is also current gene flow. This is a feature 

very common in all of genus Podarcis (Yang et al., 2021), and the P. hispanicus complex is no 

exception (see e.g. Caeiro-Dias et al., 2020). This phenomenon could have a strong impact 

on the morphology of some individuals, particularly those coming from regions near 

contact zones.   

A quite unexpected result of this study is the relatively high ability (considering the prior 

expectations) for the models to distinguish between P. lusitanicus and P. guadarramae. This is 

the only truly cryptic species pair included in this study, as individuals of these two species 

cannot be told apart even by the most experienced experts (Geniez et al., 2014). As such, 

they were first described as subspecies and only recently elevated to the species status, after 

studies on their genetic variation clarified their distinctiveness (G. Caeiro-Dias et al., 2021). 

It is thus remarkable that in our study the proportion of individuals of one species 

identified as the other is as low as 1.6% - 6.7% using ensemble models. An interesting 

follow-up study will thus be an analysis of classification focusing only on these two species. 

An also interesting result is the typically high classification success obtained for Podarcis 

carbonelli. Amongst the species in the Iberian and North African group, this is the only that 

is currently of conservation concern (having been classified as “endangered” by the IUCN). 

It is thus a promising result that computer vision models can identify P. carbonelli with a low 

error rate, since it enables the possibility of establishing citizen science distribution 

monitoring programs directed at this species once these models become available in 

naturalist mobile applications. 
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It should be emphazised that even if the models appear to fail often at classifying 

individuals into species among the nine classes compared to the two-class case or 

compared to computer vision models applied to other systems, the results obtained in this 

thesis are still, by far, the classification success obtained applying morphological characters 

in this system. Kaliontzopoulou et al., (2012b) focused on the same species group and 

applied a classification scheme based on classical characters traditionally used to distinguish 

lacertid species: biometry (linear body measurements), pholidotic (scale-count) characters 

and a combination of both types of characters. Although some of the classes considered in 

this work were now merged in our study (since the knowledge about species limits has 

improved), and hence the results cannot be straightforwardly compared, classification 

results for each class were typically much worse (mean of 56.6% in males and 51.73% in 

females). Results improved when other classification schemes were considered (binary 

schemes involving one class vs. all the others or all pairwise comparisons), which could also 

be a future possibility to consider improving even further the use of computer vision 

models. 

 

Sexual dimorphism and classification success 

Lizards of genus Podarcis typically exhibit a marked sexual dimorphism; that is, males and 

females show strikingly different morphology. Sexual dimorphism in this group translates 

into differences being more pronounced among males of different species than between 

females of different species. Females are usually more uniform since they are less brightly 

colored and lack other external features that typically help in the identification of males 

(Kaliontzopoulou et al., 2007). In similarity to the difficulties experienced by human 

observers, our results highlight that classification success was lower in females than in 

males in both problems. In the two-class problem, classification success differences were 

only evident in the dorsal view, whereas in the nine-class problem these differences were 

very significant for both views. The fact that sexual dimorphism does not affect the 

distinction between head lateral images of P. bocagei and P. lusitanicus females likely results 

from the fact that the most obvious difference among the two species, the high degree of 

head flattening exhibited by P. lusitanicus likely related to adaptation to living in rock 

crevices (Gomes et al., 2016; Kaliontzopoulou, et al., 2012a; Kaliontzopoulou et al., 2012b), 
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is shared by both males and females (Grad-CAM results suggest that the height of the head 

is indeed a feature the models consider). However, this feature alone does not work in 

distinguishing between females of all nine classes, which is reflected in this case in a much 

lower ability of the models to correctly classify females in general, but still higher than that 

of models applied to dorsal images, where females are much more similar among species. 

Curiously, overall patterns of correct classification appear to be common between the two 

sexes, e.g. P. liolepis is poorly classified both in the case of males and females. This suggests 

that at least some of the characters that the models are looking at characters are not 

sexually dimorphic. 

 

The link between morphology and classification success: explaining deep learning models 

The visualization of heatmaps produced by Grad-CAM allowed highlighting regions that 

were used by the algorithms for deciding between the classes. On one hand, this was 

important to verify that the models were looking at lizards and not irrelevant aspects of the 

images. On the other hand, the goal of attempting to decipher the features in lizard images 

that differ the most between species (and that could constitute valuable new knowledge in 

terms of understanding the eco-evolutionary dynamics of these species) was hampered by 

the great diversity of patterns found within each species coupled with the repetition of the 

same regions in different species – highlighting that likely different aspects of these regions 

were used for classification but not providing hints on which particular aspects these were. 

Although this analysis may lack some objectivity, since summarizing heatmap results is not 

straightforward, it appears that models use more diverse regions of the body to classify 

males than to classify females. This is in line with the trends described in the previous 

section, highlighting that male exhibit more differences between species than females. An 

intriguing feature is the nearly complete absence of the use of the tip of the snout to 

classify male images, while this is a recurrent feature in female heatmaps. Because Grad-

CAM analysis was only performed for a single model in each case, it remains to be 

evaluated whereas this is a feature related to the particular model that was chosen to 

produce heatmaps (the best in each case) or if it is indeed a feature related to general 

female image classification (and hence of real biological significance). 
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Methodological considerations 

Despite our best efforts, classification success for the second problem was only moderate. 

Although there are probable biological causes for this pattern (see above), we cannot rule 

out that methodological issues involving sampling or model implementation are behind this 

suboptimal result. A possibly relevant aspect involves the unbalanced sample sizes of the 

different classes. We tried to minimize the impact of this problem in our workflow, but our 

results suggest that the species with the worst classification success are also those with the 

lowest sample sizes. Therefore, adding images of these species from other sources (like 

citizen science platforms) to increase sample sizes is an important future addition to this 

work. 

An interesting observation deriving from this study is that there are no major differences in 

success when applying different deep learning models. The three models used in this work 

differ in the depth and in the general architecture of the convolutional neural networks. 

Despite these differences they all perform rather similarly on the data sets. However, even 

if the overall result is the same it does not mean that the models are considering the same 

features of the images for classification. Combining the three models by performing a 

simple average of the predictions already improves classification success in the nine-class 

problem, but it is possible that a different type of ensemble model framework (e.g. 

combining features retrieved from different models and using them in a machine-learning 

context) could result in an even bigger improvement. Nevertheless, running multiple 

models involves a considerable computational cost and may not be feasible for general 

analyses in the long term. 

Finally, a special consideration involves the possible use of different perspectives in the 

same framework, which predictably will result in much larger classification successes. 

Marques et al., (2018) suggest a wide array of ensemble approaches to tackle this problem 

which can be a starting point, but even combining the two different perspectives into a 

single image might have produced important improvements. Due to time limitations, these 

improvements were not fully explored in this thesis, but they could certainly be the object 

of future work.  
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6. Conclusions and future perspectives 

 

With this work we have shown that deep learning models can be successfully used for the 

identification of wall lizard species, achieving classification accuracies likely comparable to 

that of experienced observers and larger than of the common citizen (including that of the 

author of this thesis). However, in the more complex scenario explored in this thesis (a 

nine-class classification problem) the error rate is still moderate, and misclassification 

instances are still high for some species such as P. liolepis; therefore, the practical 

deployment of these models for research or conservation purposes is still not a possibility. 

However, this work suggests that there are prospects for improving the success of these 

models, such as augmenting class sample sizes to achieve a balanced data set and extending 

the use of ensemble models.  

Another practical consideration to include in future developments will be the use of 

geographical information; in this work we took the challenge of discriminating between all 

nine classes simultaneously for academic purposes, but this is a problem that a naturalist 

will not face in the field; although there are species that overlap and regions where the 

distribution is not well-known, a real-life problem will involve distinguishing between at 

most 3-4 species simultaneously. Including geographical coordinate information will thus 

certainly facilitate the classification problem. 

In general, beyond the specific problem of classifying wall lizards, this work shows that 

computer vision models can work for the visual distinction of cryptic species, something 

that had remained unexplored in the literature, thus opening promising research and 

application avenues. This includes the case of species such as P. lusitanicus and P. 

guadarramae, for which this work is the first suggesting morphological differences (that 

nevertheless remain to be evaluated). 
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Appendix 1. Detailed evaluation results 
 

A1.1 Two-classes case 

In all tables below AUC stands for area under the ROC curve and the f1-score refers to 

that of P. lusitanicus. 

 

Table A1. Detailed classification results for male dorsal images 

model cv 
training 
accuracy 

training 
auc 

training         
f1 

validation 
accuracy 

validation 
auc 

validation 
f1 

test 
accuracy 

test         
auc 

test            
f1 

incv3 1 1.000 1.000 1.000 0.903 0.948 0.857 1.000 1.000 1.000 

incv3 2 0.968 0.995 0.952 0.902 0.951 0.864 0.871 0.951 0.833 

incv3 3 1.000 1.000 1.000 0.935 0.994 0.905 0.885 0.966 0.837 

incv3 4 1.000 1.000 1.000 0.968 0.960 0.950 0.968 0.998 0.950 

incv3 5 0.995 1.000 0.992 0.951 0.979 0.919 0.952 0.993 0.927 

mean   0.992 0.999 0.989 0.932 0.966 0.899 0.935 0.981 0.909 

stdev   0.014 0.002 0.021 0.029 0.020 0.039 0.055 0.022 0.073 

resnet50 1 1.000 1.000 1.000 0.919 0.962 0.872 0.984 0.999 0.974 

resnet50 2 1.000 1.000 1.000 0.951 0.977 0.923 0.935 0.975 0.900 

resnet50 3 1.000 1.000 1.000 0.903 0.989 0.870 0.934 0.983 0.905 

resnet50 4 0.929 1.000 0.899 0.839 0.963 0.792 0.806 0.989 0.769 

resnet50 5 1.000 1.000 1.000 0.918 0.997 0.884 0.952 0.996 0.927 

mean   0.986 1.000 0.980 0.906 0.978 0.868 0.922 0.989 0.895 

stdev   0.032 0.000 0.045 0.041 0.016 0.048 0.068 0.010 0.076 

incrnv2 1 1.000 1.000 1.000 0.903 0.985 0.833 1.000 1.000 1.000 

incrnv2 2 1.000 1.000 1.000 0.918 0.984 0.872 0.935 0.975 0.900 

incrnv2 3 0.995 1.000 0.992 0.903 0.970 0.857 0.918 0.972 0.872 

incrnv2 4 1.000 1.000 1.000 0.935 0.996 0.905 0.935 0.996 0.909 

incrnv2 5 1.000 1.000 1.000 0.934 0.994 0.889 0.952 0.998 0.919 

mean  0.999 1.000 0.998 0.919 0.986 0.871 0.948 0.988 0.920 

stdev   0.002 0.000 0.004 0.016 0.011 0.028 0.031 0.014 0.048 
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Table A2. Detailed classification results for male head lateral images 

model cv 
training 
accuracy 

training 
auc 

training         
f1 

validation 
accuracy 

validation 
auc 

validation 
f1 

test 
accuracy 

test         
auc 

test            
f1 

incv3 1 1.000 1.000 1.000 0.905 0.983 0.850 0.902 0.959 0.824 

incv3 2 1.000 1.000 1.000 0.968 0.995 0.950 0.937 0.985 0.905 

incv3 3 1.000 1.000 1.000 0.889 0.957 0.837 0.952 0.998 0.930 

incv3 4 1.000 1.000 1.000 0.921 0.990 0.872 0.937 0.990 0.905 

incv3 5 0.989 1.000 0.983 0.869 0.986 0.733 0.905 0.976 0.824 

mean   0.998 1.000 0.997 0.910 0.982 0.848 0.926 0.981 0.877 

stdev   0.005 0.000 0.008 0.038 0.015 0.078 0.022 0.015 0.050 

resnet50 1 1.000 1.000 1.000 0.937 0.988 0.900 0.918 0.964 0.857 

resnet50 2 1.000 1.000 1.000 0.921 0.985 0.889 0.952 0.990 0.930 

resnet50 3 1.000 1.000 1.000 0.937 0.993 0.905 0.905 0.999 0.870 

resnet50 4 0.963 0.999 0.944 0.937 0.957 0.905 0.905 0.985 0.870 

resnet50 5 1.000 1.000 1.000 0.934 0.960 0.889 0.968 0.984 0.950 

mean   0.993 1.000 0.989 0.933 0.977 0.897 0.930 0.984 0.895 

stdev   0.017 0.000 0.025 0.007 0.017 0.008 0.029 0.013 0.042 

incrnv2 1 1.000 1.000 1.000 0.937 0.992 0.895 0.918 0.981 0.857 

incrnv2 2 1.000 1.000 1.000 0.952 0.997 0.930 0.921 0.990 0.884 

incrnv2 3 1.000 1.000 1.000 0.952 0.991 0.927 0.937 0.988 0.905 

incrnv2 4 1.000 1.000 1.000 0.937 0.977 0.905 0.968 0.987 0.947 

incrnv2 5 1.000 1.000 1.000 0.934 0.990 0.895 0.937 0.987 0.900 

mean  1.000 1.000 1.000 0.942 0.989 0.910 0.936 0.987 0.899 

stdev   0.000 0.000 0.000 0.009 0.007 0.017 0.020 0.003 0.033 

 
 
 
 
Table A3. Detailed classification results for female dorsal images 

model cv 
training 
accuracy 

training 
auc 

training         
f1 

validation 
accuracy 

validation 
auc 

validation 
f1 

test 
accuracy 

test         
auc 

test            
f1 

incv3 1 1.000 1.000 1.000 0.875 0.964 0.813 0.878 0.892 0.813 

incv3 2 0.932 0.994 0.900 0.820 0.900 0.757 0.750 0.939 0.714 

incv3 3 1.000 1.000 1.000 0.898 0.957 0.800 0.920 0.978 0.875 

incv3 4 1.000 1.000 1.000 0.958 1.000 0.929 0.918 0.971 0.846 

incv3 5 0.993 1.000 0.989 0.898 0.951 0.848 0.896 0.960 0.839 

mean   0.985 0.999 0.978 0.890 0.954 0.829 0.872 0.948 0.817 

stdev   0.030 0.003 0.044 0.050 0.036 0.064 0.071 0.034 0.062 

resnet50 1 1.000 1.000 1.000 0.938 0.974 0.897 0.857 0.935 0.759 

resnet50 2 1.000 1.000 1.000 0.940 0.977 0.914 0.979 0.994 0.968 

resnet50 3 1.000 1.000 1.000 0.898 0.971 0.848 0.860 0.976 0.821 

resnet50 4 1.000 1.000 1.000 0.938 0.976 0.909 0.898 0.984 0.839 

resnet50 5 1.000 1.000 1.000 0.898 0.953 0.848 0.938 0.962 0.903 

mean   1.000 1.000 1.000 0.922 0.970 0.883 0.906 0.970 0.858 

stdev   0.000 0.000 0.000 0.022 0.010 0.033 0.052 0.023 0.080 

incrnv2 1 1.000 1.000 1.000 0.958 0.996 0.938 0.918 0.978 0.867 

incrnv2 2 1.000 1.000 1.000 0.880 0.948 0.833 0.979 1.000 0.968 

incrnv2 3 1.000 1.000 1.000 0.959 0.990 0.929 0.940 0.974 0.909 

incrnv2 4 1.000 1.000 1.000 0.938 0.992 0.897 0.959 0.982 0.929 

incrnv2 5 0.925 1.000 0.893 0.776 0.949 0.732 0.729 0.933 0.683 

mean  0.985 1.000 0.979 0.902 0.975 0.866 0.905 0.974 0.871 

stdev   0.033 0.000 0.048 0.078 0.024 0.085 0.101 0.025 0.111 
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Table A4. Detailed classification results for female head lateral images 

model cv 
training 
accuracy 

training 
auc 

training         
f1 

validation 
accuracy 

validation 
auc 

validation 
f1 

test 
accuracy 

test         
auc 

test            
f1 

incv3 1 1.000 1.000 1.000 0.939 0.980 0.909 0.939 0.984 0.909 

incv3 2 1.000 1.000 1.000 0.959 0.980 0.938 0.959 0.974 0.938 

incv3 3 0.986 1.000 0.978 0.900 0.941 0.800 0.959 0.998 0.929 

incv3 4 0.986 1.000 0.977 0.880 0.987 0.786 0.880 0.924 0.786 

incv3 5 1.000 1.000 1.000 0.939 0.986 0.903 0.940 0.989 0.914 

mean   0.995 1.000 0.991 0.923 0.975 0.867 0.935 0.974 0.895 

stdev   0.007 0.000 0.012 0.032 0.019 0.069 0.033 0.029 0.062 

resnet50 1 1.000 1.000 1.000 0.939 0.996 0.909 0.918 0.982 0.875 

resnet50 2 0.987 1.000 0.978 0.898 0.978 0.815 0.898 0.982 0.800 

resnet50 3 1.000 1.000 1.000 0.900 0.970 0.848 0.959 0.969 0.938 

resnet50 4 1.000 1.000 1.000 0.900 0.957 0.857 0.920 0.955 0.882 

resnet50 5 1.000 1.000 1.000 0.939 0.971 0.897 0.900 0.937 0.848 

mean   0.997 1.000 0.996 0.915 0.974 0.865 0.919 0.965 0.869 

stdev   0.006 0.000 0.010 0.022 0.014 0.038 0.025 0.019 0.050 

incrnv2 1 1.000 1.000 1.000 0.959 0.988 0.933 0.918 0.992 0.857 

incrnv2 2 1.000 1.000 1.000 0.959 0.996 0.933 0.939 0.982 0.897 

incrnv2 3 1.000 1.000 1.000 0.920 0.975 0.875 0.959 0.990 0.938 

incrnv2 4 1.000 1.000 1.000 0.940 0.987 0.909 0.880 0.958 0.813 

incrnv2 5 1.000 1.000 1.000 0.918 0.978 0.875 0.940 0.980 0.914 

mean  1.000 1.000 1.000 0.939 0.985 0.905 0.927 0.981 0.884 

stdev   0.000 0.000 0.000 0.020 0.008 0.029 0.030 0.014 0.049 
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A1.2 Nine-classes case 

In all tables below the f1-score was weighted-averaged across classes. 

 

Table A5. Detailed classification results for male dorsal images 

model cv 
training 
accuracy 

training         
f1 

validation 
accuracy 

validation 
f1 

test 
accuracy 

test            
f1 

incv3 1 0.994 0.994 0.845 0.845 0.884 0.882 

incv3 2 0.992 0.992 0.843 0.840 0.812 0.800 

incv3 3 0.998 0.998 0.893 0.893 0.880 0.879 

incv3 4 0.997 0.997 0.884 0.885 0.814 0.816 

incv3 5 0.997 0.997 0.860 0.858 0.856 0.854 

mean   0.996 0.996 0.865 0.864 0.849 0.846 

stdev   0.003 0.003 0.023 0.024 0.035 0.037 

resnet50 1 0.994 0.994 0.831 0.828 0.828 0.824 

resnet50 2 0.995 0.995 0.880 0.878 0.789 0.784 

resnet50 3 0.998 0.998 0.888 0.888 0.870 0.868 

resnet50 4 0.988 0.987 0.856 0.857 0.837 0.838 

resnet50 5 1.000 1.000 0.893 0.889 0.838 0.833 

mean   0.995 0.995 0.870 0.868 0.832 0.829 

stdev   0.005 0.005 0.026 0.026 0.029 0.030 

incrnv2 1 1.000 1.000 0.878 0.876 0.893 0.890 

incrnv2 2 1.000 1.000 0.870 0.872 0.831 0.830 

incrnv2 3 0.995 0.995 0.856 0.853 0.829 0.826 

incrnv2 4 1.000 1.000 0.894 0.891 0.842 0.839 

incrnv2 5 0.997 0.997 0.879 0.876 0.870 0.867 

mean   0.998 0.998 0.875 0.873 0.853 0.850 

stdev   0.002 0.002 0.014 0.014 0.028 0.028 

 

Table A6. Detailed classification results for male head lateral images 
 

model cv 
training 
accuracy 

training         
f1 

validation 
accuracy 

validation 
f1 

test 
accuracy 

test            
f1 

incv3 1 0.998 0.998 0.823 0.817 0.798 0.794 

incv3 2 0.997 0.997 0.858 0.859 0.814 0.817 

incv3 3 1.000 1.000 0.886 0.885 0.849 0.848 

incv3 4 1.000 1.000 0.868 0.870 0.854 0.858 

incv3 5 0.997 0.997 0.794 0.789 0.850 0.850 

mean   0.998 0.998 0.846 0.844 0.833 0.833 

stdev   0.002 0.002 0.037 0.040 0.025 0.027 

resnet50 1 0.995 0.995 0.836 0.835 0.780 0.780 

resnet50 2 0.988 0.988 0.817 0.811 0.845 0.847 

resnet50 3 1.000 1.000 0.868 0.865 0.822 0.819 

resnet50 4 0.997 0.997 0.877 0.877 0.877 0.880 

resnet50 5 1.000 1.000 0.861 0.861 0.877 0.873 

mean   0.996 0.996 0.852 0.850 0.840 0.840 

stdev   0.005 0.005 0.025 0.026 0.041 0.041 

incrnv2 1 1.000 1.000 0.845 0.844 0.830 0.827 

incrnv2 2 1.000 1.000 0.881 0.878 0.805 0.803 

incrnv2 3 0.998 0.998 0.904 0.902 0.831 0.824 

incrnv2 4 0.998 0.998 0.873 0.871 0.845 0.844 

incrnv2 5 0.998 0.998 0.812 0.808 0.832 0.828 

mean   0.999 0.999 0.863 0.861 0.828 0.825 

stdev   0.001 0.001 0.036 0.036 0.015 0.014 
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Table A7. Detailed classification results for female dorsal images 

model cv 
training 
accuracy 

training         
f1 

validation 
accuracy 

validation 
f1 

test 
accuracy 

test            
f1 

incv3 1 0.947 0.947 0.800 0.797 0.703 0.698 

incv3 2 0.753 0.750 0.594 0.582 0.589 0.586 

incv3 3 0.979 0.979 0.805 0.804 0.791 0.793 

incv3 4 0.991 0.991 0.825 0.820 0.784 0.779 

incv3 5 0.946 0.949 0.762 0.766 0.751 0.754 

mean   0.923 0.923 0.757 0.754 0.724 0.722 

stdev   0.097 0.099 0.094 0.098 0.083 0.084 

resnet50 1 0.993 0.993 0.784 0.781 0.708 0.706 

resnet50 2 0.991 0.991 0.829 0.830 0.784 0.786 

resnet50 3 0.995 0.995 0.849 0.848 0.802 0.803 

resnet50 4 0.995 0.995 0.746 0.743 0.751 0.750 

resnet50 5 0.986 0.986 0.746 0.744 0.768 0.774 

mean   0.992 0.992 0.791 0.789 0.763 0.764 

stdev   0.004 0.004 0.047 0.048 0.036 0.038 

incrnv2 1 1.000 1.000 0.800 0.795 0.778 0.776 

incrnv2 2 0.980 0.980 0.733 0.735 0.692 0.688 

incrnv2 3 0.746 0.740 0.595 0.567 0.567 0.536 

incrnv2 4 1.000 1.000 0.831 0.828 0.805 0.801 

incrnv2 5 0.998 0.998 0.822 0.817 0.847 0.837 

mean   0.945 0.944 0.756 0.748 0.738 0.727 

stdev   0.112 0.114 0.098 0.107 0.111 0.120 

 
 
 

Table A8. Detailed classification results for female head lateral images 
 

model cv 
training 
accuracy 

training         
f1 

validation 
accuracy 

validation 
f1 

test 
accuracy 

test            
f1 

incv3 1 0.991 0.991 0.812 0.805 0.770 0.743 

incv3 2 0.983 0.983 0.768 0.748 0.770 0.750 

incv3 3 0.998 0.998 0.861 0.859 0.779 0.774 

incv3 4 1.000 1.000 0.796 0.789 0.799 0.795 

incv3 5 1.000 1.000 0.843 0.837 0.796 0.793 

mean   0.994 0.994 0.816 0.808 0.783 0.771 

stdev   0.008 0.008 0.037 0.043 0.014 0.024 

resnet50 1 0.988 0.988 0.796 0.799 0.754 0.756 

resnet50 2 0.995 0.995 0.768 0.749 0.801 0.790 

resnet50 3 0.991 0.991 0.840 0.842 0.721 0.717 

resnet50 4 1.000 1.000 0.801 0.791 0.804 0.803 

resnet50 5 0.984 0.984 0.832 0.826 0.733 0.729 

mean   0.992 0.992 0.808 0.801 0.763 0.759 

stdev   0.006 0.006 0.029 0.036 0.038 0.037 

incrnv2 1 0.998 0.998 0.843 0.844 0.832 0.832 

incrnv2 2 0.998 0.998 0.800 0.791 0.853 0.841 

incrnv2 3 0.995 0.995 0.871 0.881 0.742 0.757 

incrnv2 4 0.993 0.993 0.812 0.806 0.825 0.824 

incrnv2 5 0.997 0.997 0.827 0.825 0.770 0.758 

mean   0.996 0.996 0.831 0.829 0.804 0.802 

stdev   0.002 0.002 0.028 0.035 0.047 0.041 

 
 
 


