Aspects of the thermal ecology of the lizard *Iberolacerta monticola* of Serra da Estrela (Portugal)

Zaida Ortega1,2, Abraham Mencía1,3 & Valentín Pérez-Mellado1

1Department of Animal Biology, University of Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
2Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Mato Grosso do Sul, CEP 79070-900, Campo Grande, Mato Grosso do Sul, Brazil.
3Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Mato Grosso do Sul, CEP 79070-900, Campo Grande, Mato Grosso do Sul, Brazil.

We studied the thermal ecology of the montane Iberian rock lizard, *Iberolacerta monticola*, in the western area of its distribution at the Serra da Estrela (Portugal). We calculated the precision of thermoregulation and the indices of thermal quality of the habitat, and accuracy and effectiveness of thermoregulation. To complete the study of the thermal ecology, we assessed the relationships between body and environmental temperatures, and we described the thermal and spatial heterogeneity of the habitat. Our results indicate that the Iberian rock lizard is a cold-specialist, with a preferred temperature range between 29.80 and 31.60 °C. Thus, precision of thermoregulation is 1.8 °C, which is a normal range in thermal specialists, like other species of the genus *Iberolacerta*. This result is important because being thermal specialists and living in mountaintops make Iberian mountain lizards particularly vulnerable to global warming. The habitat of *I. monticola* at the Serra da Estrela is formed of microhabitats offering different operative temperatures, which allows lizards to select the most suitable for thermoregulation at any time of the day. Iberian rock lizards achieve an effectiveness of thermoregulation of 0.86, thanks to careful thermoregulatory behaviour. Rocky microhabitats occupy more than 50% of its habitat, so is probable that lizards are selecting rocks to warm themselves faster, minimising the costs of thermoregulation. A possible thigmothermic component of this kind would be unique among the species of *Iberolacerta*.

Key words: thermoregulation, cold-specialist, global warming, lizard, mountains, *Iberolacerta monticola*, Lacertidae, thigmothermy

INTRODUCTION

Among environmental variables, temperature has probably one of the largest effects on the life and evolution of ectotherms. Thermoregulating ectotherms show two dimensions regarding temperature: thermal sensitivity, which describes the extent to which their physiological performance depends on temperature (e.g. Huey & Kingsolver, 1989) and thermoregulation (e.g. Hertz et al., 1993), which describes the ability to regulate body temperature (see a review in Angilletta, 2009). Lizards mainly thermoregulate by adjusting activity periods, shuttling between different thermal microhabitats or adjusting their body posture (Bauwens et al., 1996). The combination of these strategies depends on the balance between their costs and benefits (Huey & Slatkin, 1976; Blouin-Demers & Nadeau, 2005).

Lacertid lizards are heliothermic thermoregulators. Thermal preferences are considered a conservative phenotypic trait (Huey et al., 2003), so we could expect small variations within lacertid lizards due to their common phylogenetic history (Kapli et al., 2011; Mayer & Pavlicev, 2007). Nonetheless, substantial differences have been detected between species, populations, seasons, or even groups of individuals inside the same population (e.g. Díaz et al., 2006). In addition, the degree to which a population approach their thermal preferences (that is, the degree of thermoregulation) also varies within the Lacertidae regarding season, altitude, sex, or habitat traits (Sagonas et al., 2013; Ortega et al., 2016a; 2016c, 2016e; Zamora-Camacho et al., 2016). Iberian lizards of the genus *Iberolacerta* inhabit high mountain areas, where they migrated after the last glaciation probably escaping warming and competition with more thermophilic lizards (Crochet et al., 2004; Mouret et al., 2011). Most are highly endangered due to restricted distributions, the destruction of their habitats and global warming (Pérez-Mellado et al., 2009).

Iberolacerta monticola lizards are vulnerable to global warming and is predicted that they could lose their thermally suitable habitat between 2020 and 2050 (Araújo et al., 2006; Carvalho et al., 2010). Although predictions of habitat could be inaccurate, realistically the physiology of high mountain lizards also made them highly vulnerable to climate change (Huey et al., 2012). This is mainly because they are cold-specialists and, as they already live in the mountain tops, are unable to migrate to cooler areas (Huey et al., 2012). Iberian rock lizards from Portugal are completely isolated from other populations, and inhabit the highest possible area within its distributional range, so the chance of migration to cooler habitats is literally nonexistent.
Z Ortega et al.

(Ortega et al., 2014, 2016e). Therefore, it is necessary to study their thermal biology in order to make more accurate predictions about their future that will help us to design the conservation measures that could prevent their extinction. Here we aim to study the thermal ecology of I. monticola, which is still unknown. We assessed the thermal sensitivity of the species, measuring thermal preferences in laboratory conditions, and thermoregulation, calculating the indices developed by Hertz et al. (1993). We also studied the thermal and spatial heterogeneity of the habitat (e.g. Sears & Angilletta, 2015; Logan et al., 2015). Thus, we aim to quantify the thermal requirements and the thermoregulation abilities of the species, as well as the thermal characteristics of the habitat of I. monticola, in order to deepen in the knowledge of the thermal biology of the Lacertidae, and to gain the knowledge on this species that is needed to establish conservation priorities under the global warming predictions.

MATERIALS AND METHODS

Study species and study area

The Iberian rock lizard, I. monticola (Boulenger, 1905) is endemic to the Iberian Peninsula. Two subspecies are considered nowadays: I. monticola cantabrica (Mertens, 1929) in the Cantabrian Mountains and Galicia (Carranza et al., 2004; Remón et al., 2013), and I. monticola monticola (Boulenger, 1905) in the Serra da Estrela in Portugal (Pérez-Mellado, 1982; Carranza et al., 2004; Crochet et al., 2004). In the Serra da Estrela, I. monticola monticola lives between 1500 m and 1939 m of altitude (Pérez-Mellado, 1997). It is an insectivoruous species, and whilst some temperature data is known, thermoregulation has not been studied in depth (Argüello & Salvador, 1988; Pérez-Mellado, 1982; Arribas, 2014).

The study was conducted in ‘Fonte dos Perús’ (Manteigas, Portugal) at 1800 m altitude, at the Natural Park of Serra da Estrela. ‘‘Fonte dos Perús’ is about 4 km from the highest point of Portugal, the plateau known as Torre (1993 m). The area consists of tarns, screes and large granite rock formations, with sparse vegetation as Torre (1993 m). The area consists of tarns, screes and large granite rock formations, with sparse vegetation as Torre (1993 m) and 12 females), that were housed in individual terraria, fed daily with mealworms and crickets, and provided with water ad libitum. The thermal gradient was built in a glass terrarium (100 x 60 x 60 cm) with a 150 W infrared lamp over one of the sides, obtaining a gradient between 20 to 60 °C. The behaviourally selected temperature (Tsel) of each lizard was recorded with a Testo® 925 digital thermometer each hour from 08.00 to 16.00 h (GMT), obtaining 150 selected temperature values. The 50% of central values of selected body temperatures was considered as the PTR to assess thermoregulation (Hertz et al., 1993; Blouin-Demers & Nadeau, 2005). Thus, we refer to each selected temperature as T sel and the 50% central values of the T sel as PTR. These were used for calculation of the indices of thermoregulation. After the experiment, lizards were released in their capture places at “Fonte dos Perús”.

Data analysis

In order to study the thermoregulation in I. monticola, we calculated the three indices developed by Hertz et al. (1993): (1) the index of accuracy of thermoregulation (mean d), calculated as the mean of absolute values of the deviations between each T sel from the PTR (as they measure deviation from the optimum), higher values of d mean lower accuracy of thermoregulation, and vice-versa), (2) the index of habitat thermal quality (mean d), calculated as the mean of absolute values of the deviations of each T sel from the PTR (analogously to d), higher values of d indicate a lower habitat thermal quality, and vice-versa), and (3) the index of effectiveness of thermoregulation (E), calculated as E = 1 – (d / d), which ranges from 0 to 1, where a higher effectiveness of thermoregulation translates into a higher value of E (see Hertz et al., 1993). Effectiveness of thermoregulation was calculated with THERMO, a Minitab module that has been used in previous studies of thermal biology (e.g. Ortega et al., 2014) and uses three kinds of input data: T y, T s, and T sel of the PTR, and was programmed to perform bootstraps of 100 iterations, building pseudo-distributions of three kinds of output values: d , d , and E. Mean values are accompanied by standard errors (SE).
Parametric statistics were performed when data followed the assumptions of normality and homogeneity of variances. If these assumptions were not fulfilled, even after log-transformation, non-parametric equivalents were carried out (Crawley, 2012; Sokal & Rohlf, 1995). Analyses were conducted on R, version 3.1.3 (R Core Team, 2015). Post-hoc comparisons of Kruskal-Wallis tests were computed with Nemenyi test with the package PMCMR (Pohlert, 2014).

RESULTS

The PTR of the studied lizards was 29.80 - 31.60 °C, and mean T_{sel} were similar among sexes (males: mean T_{sel} = 30.80 ± 0.08 °C, N = 40; females: mean T_{sel} = 30.74 ± 0.09 °C, N = 41; One-way ANOVA, F_{1, 79} = 0.298, p = 0.587). Body temperatures (T_{b}) were also similar among sexes (One-way ANOVA, F_{1, 40} = 0.876, p = 0.355), as well as air temperatures (T_{a}; One-way ANOVA, F_{1, 40} = 0.084, p = 0.774), and substrate temperatures (T_{s}; One-way ANOVA, F_{1, 40} = 0.953 p = 0.335; Table 1). There was a positive significant correlation between T_{b} of I. monticola lizards and T_{a} (r = 0.420, p = 0.003, N = 43), although the goodness of fit of the lineal regression model was poor (R^2 = 0.176, Fig. 1). Correlation between T_{b} and T_{s} was significant and strong (r = 0.782, p < 0.0001, N = 43) and the goodness of fit of the model of lineal regression was high (R^2 = 0.611, Fig. 1).

The study area is formed of microhabitats offering different operative temperatures (T_{e}) for the thermoregulation of I. monticola (Kruskal-Wallis test, N = 4499, d.f. = 7, H = 1109.80, p < 0.0001), with suitable T_{e} during the most of the hours of the daily activity period (Fig. 2). The microhabitat under rock offered lower T_{e} than the other microhabitats (Table 2). Flat rock in shade offered similar T_{e} than grass in shade, and all microhabitats covering rock in full sun offered similar T_{e} among them, and higher than the others (Table 2). Thermal heterogeneity of the habitat was 7.54 °C (N = 20). The habitat was mainly formed by big rocks and granite slabs, with some shrubs and meadows (Table 3). Mean value of the index of thermal quality of the habitat was 7.60 ± 0.02 °C. Mean value of the index of accuracy of thermoregulation was 1.09 ± 0.01 °C, and mean effectiveness of thermoregulation was 0.85 ± 0.002 (Fig. 3).

DISCUSSION

The habitat of I. monticola at the Serra da Estrela is a mosaic of big granite slabs and big rock blocs, mixed with shrubs and meadows, which is similar to the habitat of
I. cyreni in the east area of the Sistema Central (Pérez-Mellado, 1982; Carrascal et al., 1992; Monasterio et al., 2010). Thermal heterogeneity of the habitat is large (7.54 °C), and habitat thermal quality was one of the best among the studied populations of Iberolacerta (Monasterio et al., 2009; Aguado & Braña, 2014; Ortega et al., 2016a, 2016b, 2016d, 2016e). Therefore, the habitat of the Iberian rock lizard is thermally and spatially heterogeneous enough, at least under current climatic conditions, to enable proper regulation of body temperature of this species (Goller et al., 2014; Sears & Angilletta, 2015).

The Iberian rock lizard is a cold-specialist species, with a preferred temperatures range between 29.80 and 31.60 °C, and, thus, a precision of thermoregulation of 1.8 °C, which is an intermediate value among the genus Iberolacerta (Aguado & Braña, 2014; Ortega et al., 2016a, 2016b, 2016d, 2016e, 2016f). The effectiveness of thermoregulation of I. monticola is 0.85, indicating that it is an effective thermoregulator. The relationship between body temperatures and substrate temperatures is greater for I. monticola than for other species of the genus (see Table 4), whereas the relation among body temperatures and air temperature is fairly weak. These results indicate that the Iberian rock lizard uses thigmothermy (that is, the conduction of heat from the substrate) to a great extent as a mechanism of thermoregulation. It is known that lacertids are able to select the type of heating source that provides the higher rate of warming (Belliure & Carrascal, 2002).

Being a cold-specialist and living at the highest area of distribution makes I. monticola highly vulnerable under the climate change projections for this century (Berg et al., 2010; Carvalho et al., 2010; Huey et al., 2012). Either way, I. monticola lizards have a great capacity for thermoregulation and may be able to adapt their thermoregulatory behaviour to buffer the impact of climate change (Kearney et al., 2009). However, if we

![Figure 3](image_url)

Figure 3. Histograms of: (A) selected temperatures, (B) body temperatures, and (C) operative temperatures for I. monticola. The dotted lines comprise the 80% preferred temperatures range (PTR) of the species and the continuous lines comprise the 50% PTR of the species.

Table 2. P-values of the Nemenyi post-hoc paired comparisons between the operative temperatures of different microhabitats available for I. monticola.

<table>
<thead>
<tr>
<th></th>
<th>Under rock</th>
<th>Flat rock shade</th>
<th>Grass shade</th>
<th>Grass full sun</th>
<th>Flat rock full sun</th>
<th>Rock West full sun</th>
<th>Rock North full sun</th>
<th>Rock South full sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under rock</td>
<td>-</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
<tr>
<td>Flat rock shade</td>
<td><0.0001</td>
<td>-</td>
<td>1.000</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
<tr>
<td>Grass shade</td>
<td><0.0001</td>
<td>1.000</td>
<td>-</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
<tr>
<td>Grass full sun</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
<td>-</td>
<td>0.025</td>
<td>0.023</td>
<td>0.032</td>
<td></td>
</tr>
<tr>
<td>Flat rock full sun</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
<td>0.002</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Rock West full sun</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
<td>0.025</td>
<td>1.000</td>
<td>-</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Rock North full sun</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
<td>0.023</td>
<td>1.000</td>
<td>1.000</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Rock South full sun</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
<td>0.032</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3. Spatial heterogeneity of the study area at Serra da Estrela was assessed by measuring the available microhabitats in lineal transects. Mean (SE) percentages of cover and frequency are provided for the 15 transects. Slab means a big flat rock that does not provide shelter for lizards.

<table>
<thead>
<tr>
<th>Cover</th>
<th>Slab</th>
<th>Rocks > 50cm</th>
<th>Rocks < 50cm</th>
<th>Loose Stones</th>
<th>Soil</th>
<th>Grass > 15cm</th>
<th>Grass < 15cm</th>
<th>Shrubs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>16.97%</td>
<td>26.81%</td>
<td>5.48%</td>
<td>3.65%</td>
<td>5.48%</td>
<td>4.64%</td>
<td>20.73%</td>
<td>20.29%</td>
</tr>
<tr>
<td></td>
<td>(1.99)</td>
<td>(2.79)</td>
<td>(1.39)</td>
<td>(1.36)</td>
<td>(1.10)</td>
<td>(2.94)</td>
<td></td>
<td>(2.99)</td>
</tr>
</tbody>
</table>

I. cyreni in the east area of the Sistema Central (Pérez-Mellado, 1982; Carrascal et al., 1992; Monasterio et al., 2010).
Table 4. Data of the correlations between body and air temperature ($r_{T_b-T_a}$) and body and substrate temperature ($r_{T_b-T_s}$) from the other studied species of Iberolacerta.

<table>
<thead>
<tr>
<th>Altitude</th>
<th>Season</th>
<th>N</th>
<th>$r_{T_b-T_a}$</th>
<th>$r_{T_b-T_s}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iberolacerta cyreni (Ortega et al. 2016b)</td>
<td>2200</td>
<td>Summer</td>
<td>40</td>
<td>0.505 p<0.0001</td>
</tr>
<tr>
<td>I. galani (Ortega et al. 2016f)</td>
<td>1400</td>
<td>Spring</td>
<td>26</td>
<td>0.366 p=0.047</td>
</tr>
<tr>
<td>I. galani (Ortega et al. 2016a)</td>
<td>1400</td>
<td>Summer</td>
<td>79</td>
<td>0.500 p<0.0001</td>
</tr>
<tr>
<td>I. aurelioi (Ortega et al. 2016e)</td>
<td>2500</td>
<td>Summer</td>
<td>17</td>
<td>-0.382 p=0.065</td>
</tr>
<tr>
<td>I. aurelioi (Ortega et al. 2016e)</td>
<td>2700</td>
<td>Summer</td>
<td>17</td>
<td>-0.147 p=0.287</td>
</tr>
<tr>
<td>I. bannali (Ortega et al. 2016d)</td>
<td>2200</td>
<td>Summer</td>
<td>46</td>
<td>0.306 p=0.019</td>
</tr>
</tbody>
</table>

want to prevent the extinction of this high mountain subspecies, these aspects of thermal biology should be considered when designing conservation actions of the Natural Park of Serra da Estrela, with the aim to preserve their current habitat as Iberian rock lizards do not have the possibility to migrate to colder places.

ACKNOWLEDGEMENTS

We thank M.T. Mencía and J. McIntyre for linguistic revision, Koko for helping with the transects, our lab mates for support during the writing process, and João for the nice moments in Portugal. Lizards were sampled under licenses of the Govern of Portugal. Financial support was provided to Zaida Ortega and Abraham Mencia by predoctoral grants of the University of Salamanca (FPI program). This work was also supported by the research project CGL2012-39850-CO2-02 from the Spanish Ministry of Science and Innovation. All research was conducted in compliance with ethical standards and procedures of the University of Salamanca.

REFERENCES

Accepted: 20 October 2016