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Abstract

Transection or damage to the mammalian
optic nerve generally results in loss of retinal
ganglion cells by apoptosis. This cell death is
seen less in fish or amphibians where retinal
ganglion cell survival and axon regeneration
leads to recovery of sight. Reptiles lie
somewhere in the middle of this spectrum of
nerve regeneration, and different species have
been reported to have a significant variation
in their retinal ganglion cell regenerative
capacity. The ornate dragon lizard
Ctenophoris ornatus exhibits a profound
capacity for regeneration, whereas the
Tenerife wall lizard Gallotia galloti has a
more variable response to optic nerve
damage. Some individuals regain visual
activity such as the pupillomotor responses,
whereas in others axons fail to regenerate
sufficiently. Even in Ctenophoris, although
the retinal ganglion cell axons regenerate
adequately enough to synapse in the tectum,
they do not make long-term topographic
connections allowing recovery of complex
visually motivated behaviour. The question
then centres on where these intraspecies
differences originate. Is it variation in the
innate ability of retinal ganglion cells from
different species to regenerate with functional
validity? Or is it variances between different
species in the substrate within which the
nerves regenerate, the extracellular
environment of the damaged nerve or the
supporting cells surrounding the regenerating
axons? Investigations of retinal ganglion cell
regeneration between different species of
lower vertebrates in vivo may shed light on
these questions. Or perhaps more interesting
are in vitro studies comparing axon
regeneration of retinal ganglion cells from
various species placed on differing substrates.
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Introduction

Have you ever wondered why the rod of
Asclepius, that ancient sign of medical healing,1

is characterised by a snake entwined around a
staff (Figure 1)? The healing temples of
Asclepius were apparently inhabited by snakes,
which crawled freely around the floors where
the patients seeking healing spent the night. The
snake was a sign of the duality of life and death.
Often venomous to be sure, but also a sign of life
renewed. The regular ecdysis or sloughing of the
entire skin occurring regularly as the snake grew
through life was central to this sign. As
Comutus, a first century CE philosopher notes
‘Asclepius derived his name from healing
soothingly and from deferring the withering that
comes with death. For this reason, therefore,
they give him a serpent as an attribute,
indicating that those who avail themselves of
medical science undergo a process similar to the
serpent in that they, as it were, grow young
again after illnesses and slough off old age.’
Pliny the Elder (23–79 CE) wrote ‘The snake,
when the membrane covering its body has been
contracted by the cold of winter, throws it off in
the spring and thus becomes sleek and youthful
in appearance. The same animal, too, on finding
its sight weakened during its winter retreat,
anoints and refreshes its eyes by rubbing itself
on the fennel plant.’2 The ophidian eye is indeed
covered by fused eyelids, the spectacle, which
becomes opaque before it is shed with the rest of
the skin as the reptile increases in size through
life. Very interesting, you might say, but what
has this to do with the retinal ganglion cell?
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Tissue regeneration in lower vertebrates

Lower vertebrates, that is to say fish, amphibians, and
reptiles, generally grow throughout life, not reaching
a maximal adult size as do the high vertebrate birds
and mammals. And generally in association with this,
they have also maintained the ability to regenerate,

be it the regrowth of the lizard tail after autotomy,3,4 limb
regeneration in amphibia,5 cardiac regrowth in fish6

and, of more interest in this paper, lens and retinal
replication in newts7 and fish.8 In truth, the involve-
ment of reptiles in the alliterative title of this paper
does leave us with somewhat of a problem, since the
retinal ganglion cell (henceforth RGC) regeneration
involved in neural regrowth after optic nerve injury (ONI)
as either a crush episode or frank axonotomy is not as
complete as in the piscine or amphibian examples we will
cover later. Nevertheless, the variation in RGC
regeneration between reptile species may give
opportunities to study what molecular and cellular
mechanisms are at work in RGC development and
redevelopment.

Retinal ganglion cell regeneration in reptiles

The wall lizard Gallotia galloti (Figure 2a) is found on the
Canary Islands and the striking colour of the males
suggests the importance of vision for mate choice in this
species. In fact it is more likely to be the markings, which
reflect electromagnetic radiation in the ultraviolet
spectrum that are most important in sexual selection.9

Indeed across reptile genera, as with avian vision
photoreceptor sensitivity in the ultraviolet is very
important.10,11 Never let us think that as trichomats we
are at some evolutionary pinnacle in visual development!
Although we might admire the wide variation in

Figure 1 Asclepius and his rod with obligatory snake coiled
around it.

Figure 2 (a) The Gallotia galloti the Tenerife wall lizard.
(b) Ctenophorus ornatus the ornate dragon lizard.

Regenerating reptile retinas
DL Williams

2

Eye



colouration of the ornate crevice dragon lizard
Ctenophorus ornatus12 vision in the ultraviolet spectrum is
again crucial to this species too.13

But where the Gallotia and Ctenophorus lizards may be
similar in their use of ultraviolet signalling, their response
to optic nerve axonotomy is surprisingly different.
Perhaps the first thing to say is that both lizards, as with
all reptiles, show a considerable survival of RGC after
ONI. In birds and mammals, degeneration of RGC after
axonal injury is widespread as first recognised by
Santiago Ramon y Cajal as long ago as 1928.14 Axons start
to sprout at the site of the injury in these higher
vertebrates, but degenerate within a week and are lost
with apoptosis of the RGC cell body. After a standard
optic nerve crush injury in the Gallotia and Ctenophorus
lizards, however, axon regeneration occurs even in the
face of a glial scar and the absence of proliferating cells in
the retina itself. But although the Gallotia lizard has an
average RGC loss of around 30% and slow regeneration
over 6 months or so with 60% of neurectomised animals
regaining a pupillary light reflex,15 Ctenophorus has a
significantly better axonal regeneration with an
accelerated time course compared with Gallotia. Its axons
reach the visual centres of the brain within a month.
Although this sounds impressive, functionality depends
on correct topographic localisation of migrating neurons
and here even Ctenophorus falls short of our expectations.
Although all seems well to start with post injuiry and
pupillary light reflexes are restored at 2–3 months post
injury, the topographic arrangement of the retinal
projections is not maintained in the regenerating optic
nerve. Vision allowing such essential behaviours as
accurate apprehension of prey items is not regained after
ONI, nor are the retinotectal projections in these lizards
stable. Regenerating axons seem to be continually
searching, as it were, for the correct projection rather than
forming robust synaptic connections as shown
anatomically16,17 or electrophysiologically.18 And so
perhaps now is the time to stray a bit further back in
evolution and consider the anamniotes, amphibians, and
fish and their responses to optic nerve damage as
opposed to the poorer regenerative capacity of the
amniotes, those vertebrates developing in an egg with an
amnion.

Different animals, different questions?

Maybe as well as looking at the wrong genera, reptiles
rather than amphibians and fish, perhaps we are asking
the wrong question in trying to define what causes optic
nerve regeneration in animals where it occurs. Maybe we
should be asking what prevents RGC regeneration in
higher species. Is it the nerve itself unable to survive and
experience renewal or is it the environment of the

damaged nerve, which is key in preventing nerve
regeneration? Do amphibia and fish have RGC, which
themselves are intrinsically more able to regenerate or is
it the environment of the ONI scar, which is the key
variable? At a more fundamental level, is it merely RGC
survival that explains the restoration of visual processes
after ONI or is optic nerve regeneration more related to de
novo RGC neurogenesis? It used to be thought that the
retinae of anamniote species continually produced new
neurons and that this accounted for restoration of the
optic nerve. In fish, retinal stem cells do continually give
rise to new RGC. However, studies on adult Xenopus, the
African clawed toad, showed that in these animals
neurogenesis in the retina ceased once adulthood has
been reached.19 Even so, RGC axons regenerate in adult
Xenopus.20 In fish, on the other hand, retinal neurogenesis
occurs throughout life with stem cells present and
continually proliferating.21 Before we get too excited
about this as a critical difference between fish and
mammals, it has to be remembered that the central
nervous system of every genera seems to have latent stem
cells,22,23 which might be able to give rise to new nerve
cells in the right circumstances, though much more
promisingly in lower vertebrates.
It was back in 1927 that Matthey reported optic nerve

regeneration in amphibia24 but not until more than 20
years later that Sperry documented the same results in
fish.25 With regard to RGC survival, we know, as noted
above, that after ONI in the rat the RGC undergo
apoptosis within 3–5 days post injury. Terminal
deoxynucleotidyl transferase-mediated dUTP nick end
labelling staining demonstrates apoptotic signals in the
rat retina 7 days after ONI,26 whereas in the fish no such
signals are seen at any time point after axonotomy.27

What accounts for this RGC survival? Presence of pro-
and anti-apoptotic factors differ substantially between
piscine and mammalian RGC post ONI. Phospho-Akt and
phosphor-Bad are anti-apoptotic molecules from the
phosphatidylinositol-3-kinase system, which increase
after ONI in the fish28 but decrease in the rat.29 Insulin-
like growth factor-1 and brain-derived neurotrophic
factor are both key activators in the phosphatidylinositol-
3-kinase system and levels of IGF-12 increase in the
goldfish after ONI but rapidly decrease in the rat.27 Heat
shock proteins (HSP) also seem key in RGC survival. HSP
are chaperon molecules protecting cells from a wide
variety of environmental and physiological insults. HSP70
mRNA increases over theefold in the first few hours after
ONI in the zebra fish but not after mammalian ONI.30

Here inhibition of HSP activity blocked expression of the
anti-apoptotic protein Bcl-2 and increased levels of the
apoptotic protein Bax.
Is there a central trigger factor behind these various

changes? Purpurin, a retinol blinding protein, increases
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markedly but transiently in the fish retina after ONI
suggesting that retinoid activity may have an important
role in recovery after ONI, acting as a molecular
signalling cascade.31 Is the same true in other species?
Retinoic acid signalling is also upregulated in the frog
after ONI32 and while there is normally no regeneration
after ONI in mammals, a model using the neuroprotective
herbal iridoid genipin does allow RGC regeneration.
Inhibition of retinoic acid receptor beta expression by use
of siRNA inhibits the neuritogenic actions of IPRG001, a
genipin derivative.33

Ganglion cell growth or scar permissivity?

We have said that on the one hand, there are intrinsic
factors in the anamniote RGC, which explain their
survival and regeneration but on the other, the
extracellular environment after the ONI is critical too. The
glial scar resulting from the ONI in mammals is inhibitory
to nerve regeneration. Oligodendrocytes and myelin are
potent inhibitors of axonal regrowth in the mammalian
central nervous system,34 but in the fish and amphibian
this regrowth is not inhibited in the same manner with
oligodendrocytes successfully remyelinating regenerating
optic nerve axons,35 which can then reform synapses in
the optic tectum.36 The area of ONI in fish is characterised
by increased extracellular matrix molecules, such as
tenascin, chondroitin sulphate, and laminin.37,38 If we
return to the lizards we began with, straddling the gap
between the axonal restoration of the fish and the failure
of regeneration in mammals, RGC axons in Gallotia galloti
regenerate successfully even in the presence of inhibitory
myelin and oligodendrocytes. Their sensitivity seems to
be less than neurons from higher vertebrates. Intricate
work from Lang and Stuermer’s group culturing Gallotia
retinal explants on lizard or rat glial cell cultures or rat
dorsal root ganglion explants on lizard optic nerve
explants showed that lizard RGC growth cones traversed
rat oligodendrocyte cultures, whereas rat neurons are
inhibited by lizard oligodendrocytes.39 It seems that it
may be the lizard RGC which has the ability to regenerate
in whatever environment it is placed. Perhaps it is its
response to signals that go unnoticed by mammalian
RGC is the key factor in its survival and regeneration.
Hypertrophic gliosis in the region of ONI (Figure 3) is
mediated by axons in the locality with the presence
of growing optic nerve fibres being essential to
oligodendrocyte and type II astrocyte differentiation.40

Mammalian relevance?

Although the work on fish, amphibians, and reptile ONI
is fascinating, its true relevance must be in what it tells us
about repair of mammalian optic nerves and, though it

pains me as a veterinary surgeon to have to say this, its
impact really lies on how it can help us in understanding
restoration of human optic nerve structure and function
not regaining lizard or fish vision! As we move to
recovery from ONI in fish to mammals perhaps we can
move to an animal which, while clearly a mammal, has
optic nerve regeneration much more similar to that in fish
and amphibians. This is the naked mole rat
(Heterocephalus glaber).41 Little bigger than a standard
laboratory mouse (Mus musculus), the naked mole rat has
a lifespan not of 2–3 years as with Mus but rather of 30
years. Living underground with low-oxygen levels in
large eusocial colonies, Heterocephalus is nye on
poikilothermic, living with its body temperature
matching the ambient temperature. These animals not
only has an exceptionally long lifespan but little in the
way of senescence and rare reports of neoplasia. Its cells
have high levels of telomerase, which may explain the
substantial longevity but also ironically high levels of
oxidative stress.42 So with all these unusual characteristics
perhaps it is not surprising that the naked mole rat’s
response to ONI is very different from those in more
conventional mammals. Rather than the low percentage
of RGCs that survive ONI in other mammals, in
Heterocephalus, 70% of RGC survive ONI and three
times more optic nerve axons show regeneration after
ONI. So what differs between conventional laboratory
rodents and Heterocephalus with regard to the damaged
optic nerve? The JAK/STAT pathway seems to play an
important part in optic nerve regeneration in fish43

and, while there is nearly no optic nerve p-STAT3
immunoreactivity in Mus, many RGC in Heterocephalus
express nuclear p-STAT3 after ONI. Not only are there
intrinsic differences in Heterocephalus RGC but extrinsic

Figure 3 GFAP staining shows astrocytosis in injured optic
nerve (right).
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variations may be critical, particularly those in astrocytes.
Immunohistochemistry for GFAP, a marker for reactive
astrocytes shows little difference between Heterocephalus
and Mus optic nerves 3 days after ONI, whereas at
14 days, there is little GFAP immunoreactivity in Mus but
intense staining in Heterocephalus.44 In most mammals,
the fibrotic scars after ONI tend to preclude the formation
of glial bridges across the lesion, whereas in fish,
amphibians, and naked mole rats astrocyte involvement
in the regenerating optic nerve seems to be key.
Astrocytes have key roles in remodelling the optic nerve
scar, but their activity and neuronal responses to it differ
substantially between species.

Conclusion

The reason for being concerned about RGC regeneration
after ONI is of course to prevent the sight threatening
damage of glaucoma. So perhaps rather than looking at
experimental optic nerve crush models, we should be
searching for spontaneously glaucomatous reptiles. Cases
such as that in Figure 4 appear exactly what we are
looking for—an animal with an enlarged glaucomatous
globe. But here we need to go back to Pliny the Elder with
whom we started. The apparent rejuvenation experienced
by the snakes he saw was in fact shedding of the skin and
transparent spectacle. And the swelling seen in Figure 4 is
not an enlarged globe but rather a swollen spectacle in an
animal with an occluded nasolacrimal duct, in what we
term a bullous spectaculopathy.45 All of which goes to
show how difficult it can be to extrapolate from these
findings in species very different from the experimental
laboratory mammals we are more used to investigating.
Part of the fascination of investigating responses to ONI
in these lower vertebrates is quite how different they are,
how ready they are to regenerate. They are so different,
however, in so many varying ways that it can be very
difficult to determine what it is, RGC or scar biology or

both, which accounts for this dramatic variation in RGC
regeneration in these lower vertebrates compared with
the vast majority of mammals.
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