Reproductive isolation between oviparous and viviparous lineages of the Eurasian common lizard *Zootoca vivipara* in a contact zone

LUCA CORNETTI1,2,*, FRANCESCO BELLUARDO1,3, SAMUELE GHIELMI4, GIOVANNI GIOVINE5, GENTILE F. FICETOLA6,7, GIORGIO BERTORELLE2, CRISTIANO VERNESI1† and HEIDI C. HAUFFE1†

1Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all'Adige, Trento, Italy
2Dipartimento di Scienze della Vita e Biotecnologie, University of Ferrara, Via Borsari 46, 44121 Ferrara, Italy
3Dipartimento di Bioscienze, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
4Museo Insubrico di Storia Naturale di Clivio e Induno Olona, Via Manzioni 215, 21050 Clivio, Varese, Italy
5Stazione sperimentale regionale per lo studio e la conservazione degli anfibi in Lombardia – Lago di Endine, Via del Cantiere 4, 24065 Lovere, Bergamo, Italy
6Dipartimento di Scienze dell'Ambiente e del Territorio e di Scienze della Terra, University of Milano-Bicocca, Piazza dell’Ateneo Nuovo 1, 20126 Milan, Italy
7Laboratoire d’Ecologie Alpine (LECA), Université Grenoble-Alpes, 2233 Rue de la Piscine, 38041 Grenoble Cedex 9, France

Received 10 September 2014; revised 5 November 2014; accepted for publication 6 November 2014

Contact zones between two evolutionary lineages are often useful for understanding the process of speciation because the observed genetic pattern reflects the history of differentiation. The Eurasian lacertid lizard *Zootoca vivipara* is a potentially interesting model for studying the role of reproductive mode in the speciation of squamate reptiles because it has both oviparous (*Zootoca vivipara carniolica*) and viviparous (*Zootoca vivipara vivipara*) populations that have recently been shown to be genetically distinct. We studied a newly-discovered syntopic area of these two *Zootoca* subspecies in the central Italian Alps using genetic markers to investigate the level of introgression between them. Patterns of genetic differentiation in a fragment of the mitochondrial DNA *cytb* gene and a set of nuclear microsatellites show that the speciation process is complete in this area, with no evidence of recent introgression. Phylogenetic and genotypic divergence suggests that the two subspecies have experienced long independent evolutionary histories, during which genetic and phenotypic differences evolved. The possible roles of biogeography, reproductive mode, and cytogenetic differentiation in this speciation process are discussed. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, –––. 1

INTRODUCTION

The Eurasian lacertid lizard *Zootoca vivipara* is a potentially unique model for studying the role of reproductive mode in the speciation of squamate reptiles. Despite its scientific name, this species shows both viviparous and oviparous reproduction (Surget-Groba et al., 2001). Although there are two other species of squamate lizards with both modes of reproduction (the Australian scincid lizards *Lerista bougainvillii* and *Saiphos equalis*; Qualls & Shine, 1998; Smith, Austin & Shine, 2001) only
MATERIAL AND METHODS

During recent alpine-wide field surveys, a relatively small area (0.72 km²) of potential overlap was identified between *Z. v. vivipara* and *Z. v. carniolica* in the alpine valley Valmora (central northern Italy, 46°02′15″ to 46°02′36″N; 9°37′09″ to 9°38′01″E; 1400–1600 m above sea level; Fig. 1). Subsequently, during the summers of 2012 and 2013, 60 lizards were captured by hand within this area over 27 nonconsecutive days by one to four surveyors. To confirm that there was adequate sampling coverage, mixture models for open populations were used to estimate the local abundance of lizards for four sites of the study area (Kéry et al., 2009) (Fig. 1; see also Supporting information, Table S1). The analyses suggested that the 60 captured individuals represented at least 50% of the resident lizard population.

Three-millimetre tail tips were collected and stored at room temperature in 95% ethanol until DNA extraction. Genomic DNA was extracted using the Qiagen DNeasy Tissue Kit (Qiagen Inc.). For each sample, a 385-bp fragment of the mitochondrial gene *cytochrome b* (*cytb*) was amplified and sequenced as described previously (Cornetti et al., 2014). *cytb* is the most extensively sequenced marker for the *Zootoca* genus and therefore is useful for comparing our results with previous studies, as well as to confirm subspecies identification, because no morphological traits unequivocally distinguish the two forms. Thirteen microsatellite (short tandem repeat; STR) markers (Lv-4-alpha, Lv-2-145, Lv-4-X, and Lv-4-115: Boudjemadi et al., 1999; B114: Remon et al., 2008; Lacviv04, Lacviv06, Lacviv26, Lacviv07, Lacviv27, Lacviv30, Lacviv05, and Lacviv17: Agata et al., 2011) were also amplified in seven multiplexed runs under the conditions described in the Supporting information (Table S2).

Sequence fragments were edited with FINCHTV, version 1.4.0 (Geospiza, Inc.; http://www.geospiza.com), assembled using SEQUENCER, version 4.7 (Gene Codes Corporation), and aligned using CLUSTAL X (Thompson et al., 1997). These and all publicly available haplotypes found across the Alpine chain were collapsed into a median-joining network using NETWORK, version 4.6.1.1 (http://www.fluxus-engineering.com/sharenet_rn.htm), so that the subspecies of each of our samples could be identified.

The STR data were tested for deviations from Hardy–Weinberg equilibrium and linkage disequilibrium using GENEPOP, version 4.0 (Rousset, 2008). Possible genotyping errors (the presence of null alleles, large allele dropout, and stuttering) were assessed with MICRO-CHECKER, version 2.2.3 (Van Oosterhout et al., 2004). Because some markers had null alleles (see Results), we used FREEA (Chapuis et al., 2000).
& Estoup, 2007) to calculate whether such null alleles induced a positive bias in the estimates of F_{ST}. Genetic variation at STRs and subspecies differentiation were investigated using the R package DIVERSITY (Keenan et al., 2013); number of alleles (N_a), allelic richness (A_r), and observed and expected heterozygosity (H_o and H_e, respectively) were calculated for each subspecies, whereas F_{ST} and G'_{ST} were calculated between subspecies. Factorial correspondence analysis (FCA) implemented in GENETIX (Belkhir et al., 2004) was used to visualize the distribution of genetic variation across individuals.

NEWHYBRIDS, version 1.1 beta (Anderson & Thompson, 2002) and STRUCTURE, version 2.3.4 (Pritchard, Stephens & Donnelly, 2000) were used for inferring hybridization between subspecies, with indi-
individual lizards being categorized as belonging to either parental subspecies (pure vivipara, pure carniolica) or one of the hybrid categories (F₁, F₂, or backcross) using a Bayesian algorithm and Markov chain Monte Carlo sampling. We ran 10 independent analyses using uniform priors, and a burn-in of 2.5×10^5 followed by 10^6 iterations. To detect possible hybrids, we also ran 10 independent analyses of STRUCTURE using $K=2$ clusters, representing the two potentially hybridizing subspecies (burn-in of 2.5×10^5 followed by 10^6 iterations).

RESULTS

Detailed mapping of captures showed that Z. v. vivipara and Z. v. carniolica overlap considerably in Valmora, in particular in a wet meadow of approximately 1 ha of surface area, and should come into contact with one another because individuals of both lineages were captured on the same days and in close proximity (Fig. 1). All 60 samples were successfully sequenced for cytb. On the basis of haplotypes, our sample set consisted of 29 Z. v. carniolica (all with haplotype OS3, AF444038) and 31 Z. v. vivipara (23 of the VL_26, AF247976; eight of the VB1, KF898394, haplotype). The median-joining network, shown in Figure 2A, highlights the high level of divergence (19 mutations) between Z. v. vivipara and Z. v. carniolica haplotypes found in the contact zone under investigation (Fig. 1).

All thirteen STRs were successfully genotyped for all samples. The MICRO-CHECKER results, based on the grouped dataset (i.e. Z. v. vivipara and Z. v. carniolica), suggested the presence of null alleles for four markers; however, these were distributed evenly among subspecies (Lv115 and Lacviv04 in Z. v. carniolica and Lacviv07, Lacviv30 in Z. v. vivipara). In addition, three of these loci (all except Lacviv30), showed significant deviation from Hardy–Weinberg equilibrium ($P < 0.05$, after correction for multiple testing using the false discovery rate (Benjamini & Hochberg, 1995). Only one out of 78 pairs of loci showed significant genotypic linkage ($P < 0.05$; Lv-4-X and Lacviv30). Because analyses with or without deviant loci led to very similar conclusions, we only report the results of analyses including all 13 STRs.

Visualization of the overall genotypic variation in STRs (Fig. 2B) suggests a marked genetic difference between individuals belonging to the two cytb clades, with no mitochondrial introgression. Genetic variability within the two populations, which can now be confidently referred to the viviparous and oviparous groups, was similar; although Z. v. carniolica had lower estimates for all indices, these differences were not significant (t-test, $P > 0.05$) (Table 1). The mean number of private alleles was 2.6 (56%) and 4.0 (66%) in Z. v. carniolica and Z. v. vivipara, respectively; the G_{st} value between the two groups was high and significant (0.891), as was the F_{st} (0.381), which was very similar to the F_{st} calculated, excluding null alleles, with FREENA (0.372).

Admixture analyses using NEWHYBRIDS clearly illustrated the lack of hybrid individuals in our sample set, and all samples were assigned to their pure parental subspecies with a probability above 99%. Similarly, STRUCTURE estimated a mean posterior probability of ranking Z. v. carniolica individuals to one cluster of 99.7% and Z. v. vivipara individuals to the other cluster of 99.5% (Fig. 2C).

DISCUSSION

In the studied area, speciation between the oviparous Z. v. carniolica and the viviparous Z. v. vivipara is complete because our multilocus analyses confirmed two highly distinct groups and the presence of hybrid individuals can be confidently excluded. Mitochondrial DNA sequences confirmed the deep haplotype divergence between lineages (Fig. 2A), as previously suggested by Cornetti et al. (2014). We also reported profound genotypic differentiation (FCA) (Fig. 2B), corroborated by a high and significant G_{st} and F_{st} values between subspecies and a high percentage of private alleles (56% and 66% in Z. v. carniolica and Z. v. vivipara, respectively). Thus, molecular analyses clearly illustrated the lack of gene flow between oviparous and viviparous lineages in this contact zone.

The lack of hybrid genotypes of any category (F₁, F₂, and backcrosses) highlighted that interbreeding of the two subspecies of Z. vivipara in this hybrid zone is absent or extremely rare (Fig. 2C). Elsewhere, convincing evidence of natural hybridization between oviparous and viviparous Z. vivipara has also never been reported. Lindtke et al. (2010) claimed that hybridization occurs between wild populations of Z. v. carniolica and Z. v. vivipara, although the hybrid origin of these individuals could not be confirmed. However, hybridization in captivity has been noted previously (Arrayago, Bea & Heulin, 1996), with it being suggested that the geographically isolated Z. v. louisianzti and Z. v. vivipara can successfully hybridize, and that the fitness of F₁ hybrids was lower than that of parental forms. However, we expect a more reduced viability/fertility in a carniolica × vivipara F₁ hybrid than a louisianzti × vivipara cross. This is because Z. v. vivipara (mitochondrial cytb Clade E in Cornetti et al., 2014, with females having $2n = 35$ and a Z/ZW sex chromosome system including W as a macrochromosome; Odierna et al., 2004) is more similar karyotypically and genetically to Z. v.
Figure 2. Analysis of mitochondrial and nuclear genetic variation of Zootoca vivipara in the Valmora contact zone. Network analysis including deposited sequences from Alpine distributions of common lizard subspecies: closed and open circles represent mitochondrial (mt)DNA haplotypes of Zootoca vivipara vivipara and Zootoca vivipara carniolica, respectively; circles indicated by asterisks correspond to haplotypes found in the present study; grey dots represent diverging mutations between observed haplotypes (A). FCA of genotypic variation between individuals divided according to cyt b assignment (B). Plot representing the Q-value of individuals belonging to predefined mtDNA clusters as estimated by STRUCTURE (C).
In reptiles, this switch is consistently associated with colonization of cold climates (Pincheira-Dinoso et al., 2001). It has been hypothesized that colder climatic conditions exerted a strong selective pressure on some populations pushed to southern-eastern areas of Europe during the Quaternary glacial phases, giving rise to viviparity. Viviparity then permitted the populations pushed to southern-eastern areas of Europe to survive oviparous populations during interglacial periods. Surviving oviparous populations in the Italian peninsula, currently classified as *Z. v. carniolica*, presumably remained well-adapted to the warmer climate because their spatial and demographic re-expansion after glacial oscillations was limited to areas south of the Alps (Surget-Groba et al., 2002). The above hypothesis would indicate that the switch to viviparity in *Z. vivipara* occurred between 5.3 and 0.01 Mya, in the same range as mitochondrial phylogenetic analysis suggest that *vivipara* and *carniolica* began to differentiate (4.5 Mya, 95% confidence interval 6.1–2.6; Cornetti et al., 2014) and long before their secondary contact in Valmora [after the Last Glacial Maximum (LGM), approximately 10 000 years ago].

The evolutionary transition from oviparity to viviparity requires major structural, physiological, and therefore genetic changes (Murphy & Thompson, 2011). Nonetheless, and perhaps remarkably, this switch has been reported at least 115 times in squamate reptiles, out of a total of 140 switches for vertebrates (Sites, Reeder & Wiens, 2011). This change in reproductive mode in *Z. v. vivipara* may have determined the genetic differentiation between these subspecies. The ecological shift that coincided with the evolution of viviparity would have resulted in an allopatric distribution of the two subspecies and, in the Alps, in different altitudinal distributions (mean 1200 (range 450–1880) m asl and 1700 (1160–2160) m asl, for *Z. v. carniolica* and *Z. v. vivipara*, respectively; Cornetti et al., 2014), where genetic drift may have promoted further differentiation.

In addition to a switch in reproductive mode and drift, karyotypic divergence (as described above) may also have posed significant post-zygotic barriers upon secondary contact, such as hybrid subfertility, sterility or inviability (Coyne & Orr, 2004). F1 hybrids between *carniolica* males × *vivipara* females are expected to show misalignment between the *carniolica* W microchromosome, the *vivipara* W macrochromosome, and an *carniolica* autosome during meiosis, and these three chromosomes may then fail to segregate regularly, causing germ cell death and/or resulting in inviable aneuploid gametes. Essentially, this type of chromosomal rearrangement may cause lowered hybrid fitness, potentially limiting gene flow between the two lineages (Faria & Navarro, 2010), playing an important role in the speciation process in many vertebrates, including lizards (Leache & Sites, 2009). On the basis of genotypic results reported in the present study and previous studies about karyotypic and phylogenetic divergence between *Z. v. vivipara* and *Z. v. carniolica*, we hypothesize that the speciation process between the two lineages was complete or almost complete before their secondary contact in the Alpine chain as a result of a switch in reproductive mode some time before the LGM. In this scenario, the role of reproductive mode may have made a strong contribution to genetic differentiation, although drift was almost certainly a contributing factor in allopatry.

In conclusion, *Z. v. vivipara* and *Z. v. carniolica* lineages and their contact zones provide excellent models for studying speciation and suitable subjects.
for investigating the genomic basis of the oviparity/viviparity transition. Given the high level of genetic divergence and lack of gene flow between Z. v. vivipara and Z. v. carnoliaca reported in the present study, these two ‘subspecies’ should be considered as separate management units for conservation purposes. If the other contact zone also confirms these results, Z. carnivica should be recognized as a full species, distinct from Z. vivipara. Because the most suitable habitats for Z. carnivica are considered to be threatened by climate change and anthropization (Moore, 2002), conservation measures should be urgently re-evaluated because Z. vivipara is currently considered of least concern (IUCN, 2014).

ACKNOWLEDGEMENTS

This project was funded by the Autonomous Province of Trento under the Grande Progetto ACE-SAP (Alpine Ecosystems in a Changing Environment: Biodiversity Sensitivity and Adaptive Potential; University and Scientific Research Service, regulation number 23, 12 June 2008, Trento) and the Fondazione Edmund Mach. We warmly thank M. Girardi, L. Laddaga, and F. Belluardo for their assistance during sampling. We also thank the Parco delle Orobie Bergamasche (Anfi. Oro. Project) for logistical support. We thank three anonymous reviewers for their helpful comments. The authors have no conflicts of interest to declare.

REFERENCES

Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F. 2004. GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Montpellier: Laboratoire Genome, Populations, Interactions, CNRS UMR 5171, Université de Montpellier II.

Lindtke D, Mayer W, Böhme W. 2010. Identification of a contact zone between oviparous and viviparous common
lizards (Zootoca vivipara) in central Europe: reproductive strategies and natural hybridization. Salamandra 46: 73–82.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Table S1. Empirical Bayes estimation of lizard abundance in the four sites within the study area. Capture date, air temperature, precipitation, solar radiation, and number of surveyors were assumed to affect detection probability. We used the Akaike information criterion, corrected for small sample size, to identify the combination of predictors best explaining detection probability (Richards et al., 2011); we assumed a negative binomial error for the abundance component of models. Models were run using the package ‘unmarked’ in R (Fiske & Chandler, 2011). An empirical Bayes algorithm was used to estimate lizard abundance in the four sites and the 95% confidence interval.

Table S2. Thermocycling condition of microsatellites loci amplifications and genotyping. The 13 loci were amplified in seven multiplexes with an initial incubation at 94 °C for 10 min, followed by 30 cycles of 94 °C for 1 min, annealing temperature for 45 s, and 65 °C for 1 min, with a final extension of 65 °C for 10 min. Polymerase chain reaction (PCR) amplifications were optimized in a 20-μL reaction volume containing 1 μL of DNA, 2 μL HotMaster Taq Buffer 25 mM Mg2+ (Eppendorf), 100 μM dNTPs, a variable proportion of labelled forward and reverse primers, 1 U of HotMaster Taq Polymerase (Eppendorf), and double-distilled water. PCR products were run with an internal lane standard (LIZ) on an ABI 3130 (Applied Biosystems); alleles were scored using GENE MAPPER (Applied Biosystems).