ABSTRACT

Aim We explored the phylogenetic relationships of species of *Mesalina*, using one nuclear and two mitochondrial loci. This genus of lacertid lizards is widely distributed in North Africa and the Middle East and our goal was to develop a scenario capable of explaining the current distribution and evolutionary patterns within the genus in the context of the wider historical biogeography of the region.

Location North Africa and the Middle East.

Methods The assembled dataset consisted of 193 *Mesalina* individuals, representing 12 species distributed across the geographical range of the genus. Bayesian and maximum likelihood methods were used to support phylogenetic inferences on two mitochondrial (cytochrome *b* and 16S ribosomal RNA) and one nuclear (beta-fibrinogen intron 7) markers. Palaeogeographical and palaeoclimatic data were used to support the inferred phylogeographical patterns.

Results *Mesalina* lizards exhibit high genetic diversity and complex phylogenetic patterns, leading to an unsatisfactory systematic hypothesis of one paraphyletic and three polyphyletic traditional species. The estimated divergence times place the origin of the genus in the early Miocene (c. 22 Ma) and the divergence of most currently recognized species in the middle to late Miocene. The inferred ancestral distribution suggests that the genus and most of its species originated somewhere in Arabia or the Middle East, with the exception of the *Mesalina olivieri* complex, which may be of African origin.

Main conclusions Phylogenetic reconstruction based on the three loci studied suggests a higher than expected cryptic diversity of *Mesalina* in North Africa and the Middle East. We suggest that the tectonic movements of the Arabian plate, coupled with the climatic changes occurring since the Miocene, may be responsible for the phylogeographical patterns of North African and Middle Eastern *Mesalina*.

Keywords Cryptic diversity, historical biogeography, lacertid lizards, *Mesalina*, Middle East, Miocene, North Africa, palaeoclimatic oscillations, phylogenetic reconstruction, tectonics.
Most of the phylogeographical effort in the non-European part of the Mediterranean Basin has focused on the Maghreb region of North Africa and Anatolia (Fonseca et al., 2009; Kornilios et al., 2011; Gonçalves et al., 2012). Few studies have included representatives from the Middle East and the eastern part of North Africa (Gvozdik et al., 2010; Migliore et al., 2012) or, in particular, from the Arabian Peninsula, in spite of the latter’s long and complex faunal interchange with the Middle Eastern and North African areas (Amer & Kumazawa, 2005; Carranza et al., 2008; Pook et al., 2009; Metallinou et al., 2012).

The collision of the Arabian Peninsula and the Anatolian plate led to the closure of the Tethyan seaway (Rögl, 1999; Popov et al., 2004) and the formation of the so-called Gymnocephalus land bridge, which permitted terrestrial interchange between Eurasia and Africa during the early Miocene, c. 19 Ma (Rögl, 1999). The movement of the Arabian Peninsula also caused the emergence of several geographical barriers that played a significant role in the formation of the distribution patterns of North African and Middle Eastern species. Among the most important barrier-forming events were the opening of the Red Sea, the formation of the Sinai Peninsula, the two rifts on either side of Sinai (i.e. the Wādī ‘Araba on the east and the Gulf of Suez on the west) and the formation of the Taurus and Zagros mountain ranges (Arnold, 1987; Disi et al., 2001; Harzhauser et al., 2007).

Climatic oscillations during the Cenozoic have also influenced the faunal composition of North Africa and the Middle East (Le Houérou, 1997; Anderson, 1999). During the Cenozoic, the climate has changed successively from warm and humid into the Quaternary glaciations (Zachos et al., 2001). Tectonic changes, such as the uplift of the Tibetan Plateau and the East African Rift, have reinforced these climate changes and marked the onset of aridity in North Africa and Arabia (Michels et al., 2009). In particular, the first appearance of drier grasslands, followed by major faunal turnover, is documented during the mid-Miocene (c. 14 Ma) in Africa, following the global trend of increased aridity in the mid-latitudes (Flower & Kennett, 1994). The broader aridification events that eventually resulted in the formation of the Sahara are largely attributed to the Miocene–Pliocene (Le Houérou, 1997; Schuster et al., 2006; Micheels et al., 2009); desert conditions similar to the Sahara may have appeared by at least 7 Ma (Schuster et al., 2006).

Molecular dating indicates that radiation and expansion of several desert taxa occurred before the Pliocene (Carranza et al., 2008 and references therein; Metallinou et al., 2012), favouring the view that desert conditions have existed since the Miocene, even if they were geographically restricted (Schuster et al., 2006). These repetitive wet–dry cycles consequently led to habitat expansion or reduction [at least 8–10 cycles are believed to have occurred since the late Pliocene (Le Houérou, 1997)] and may have contributed to vicariance events (Douday et al., 2003).

Lizards are considered to be ideal organisms for studying phylogeography, because of their low dispersal abilities and often specialized ecological niches, making them accurate markers of past climatic and ecological conditions (Camargo et al., 2010). Mesalina, in particular, may serve as an excellent model group through which to explore the phylogeography of North Africa and the Middle East, given its wide distribution in both areas. Currently, the genus comprises 14 species that inhabit xeric habitats and which are found at a wide range of elevations (Schleich et al., 1996; Sindaco & Jeremčenko, 2008). Some of them are widely distributed (such as M. guttulata, M. olivieri, M. rubropunctata, M. brevirostris and M. pasteurii), while others have a more restricted distribution (such as M. martini, M. watsonana, M. balfouri, M. adramitana and M. simoni) or are even micro-endemic (such as M. bahaeddini and M. kuri). There are two previous studies that discuss the phylogeography of the genus Mesalina (Kapli et al., 2008; Šmidt & Frynta, 2012), but both were based on a limited number of species and samples. The present study provides a comprehensive phylogeny representing most of the currently recognized species, based on both mitochondrial (mt) and nuclear sequence data. In addition, the study provides a phylogeographical hypothesis that can explain the current distribution of Mesalina lizards using historical events in North Africa and the Middle East.

MATERIALS AND METHODS

Sampling

The assembled dataset consisted of 193 Mesalina individuals, representing 12 out of the 14 currently recognized species and various morphotypes that could not be assigned to any species based on their morphological characters. The two missing species are only known from their type localities, i.e. from Somalia (M. ercolinii) and Oman (M. ayunensis) (Sindaco & Jeremčenko, 2008). All the samples (Fig. 1) were sequenced for two mitochondrial DNA (mtDNA) loci, cytochrome b (cyt b) and 16S ribosomal RNA (16S). Seven samples of the genus Gallotia and two of the genus Eremias were used as outgroup taxa. A subset of 56 Mesalina samples and eight outgroup taxa (one Eremias and seven Gallotia species) were also sequenced for the nuclear marker beta-fibrinogen intron 7 (β-fibrin7). For the estimation of divergence times, six additional taxa were used (Psammodromus algirus, Podarcis cretenis, Podarcis peloponnesiacus, Podarcis bocagei, Podarcis carbonelli and Podarcis hispanicus). For full details of all the specimens see Appendix S1 in the Supporting Information.

DNA extraction, amplifications and sequencing

Total genomic DNA was extracted as described in Aljanabi & Martinez (1997). Poorly preserved samples were treated as described in Austin & Melville (2006). For the polymerase chain reactions (PCR), we used six pairs of primers, three of which were designed in the current study (Table 1).

The PCR products were purified with a NucleoSpin PCR purification kit (Macherey–Nagel, supplied by Lab-Supplies
Sequencing of the PCR product was performed either directly for the mitochondrial loci, using the corresponding PCR primers, or after cloning, choosing one clone per sample for the nuclear locus, into the pCR2.1/TOPO vector (Invitrogen, supplied by Antisel SA, Thessaloniki, Greece). Double-stranded sequencing of the DNA sequences was performed in both directions using a Big-Dye Terminator Cycle Sequencing (3.1) kit on an ABI-prism 377 automated sequencer, by the sequencing company Cellular and Molecular Immunological Applications (Cemia, Larissa, Greece). GenBank Accession numbers for the sequences produced by this study are given in Appendix S1.

Table 1 The primers used for the amplification of three target loci in the study of the lacertid lizard *Mesalina* in North Africa and the Middle East.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer name</th>
<th>Sequence name</th>
<th>Length (bp)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>cyt b</td>
<td>GLUDG-L</td>
<td>5’-TGACTTTGAAARACCAYCGTTG-3’</td>
<td>c. 450</td>
<td>Palumbi et al. (1991)</td>
</tr>
<tr>
<td></td>
<td>CB2-H</td>
<td>5’-CCCTCAGAATGATTTTGTCCTCA-3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mes_cytb_F</td>
<td>5’-CGWAAAACAACCCVATCCT-3’</td>
<td>c. 400</td>
<td>Current study</td>
</tr>
<tr>
<td></td>
<td>Mes_cytb_R</td>
<td>5’-GATATTTGTCCTCAGGGHA-3’</td>
<td></td>
<td>Current study</td>
</tr>
<tr>
<td>16S rRNA</td>
<td>16SAR-L</td>
<td>5’-CGCCTGTATTATCAAAAAACAT-3’</td>
<td>c. 530</td>
<td>Palumbi (1996)</td>
</tr>
<tr>
<td></td>
<td>16SBR-H</td>
<td>5’-CCGCGGTACTGAACGTACGTT-3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mes_16S_F</td>
<td>5’-CGGCGGTATCCTACCCGTGCAA-3’</td>
<td>c. 500</td>
<td>Current study</td>
</tr>
<tr>
<td></td>
<td>Mes_16S_R</td>
<td>5’-TTAATCCTGAAACAAAAGACC-3’</td>
<td></td>
<td>Current study</td>
</tr>
<tr>
<td>ß-fibint7</td>
<td>BFXF</td>
<td>5’-CAGGGAGAGCTACTTTGATTAGAC-3’</td>
<td>c. 600</td>
<td>Sequeira et al. (2008)</td>
</tr>
<tr>
<td></td>
<td>BF8</td>
<td>5’-CACCACGGTCTCTGTTTGAACACTG-3’</td>
<td></td>
<td>Pinho et al. (2008)</td>
</tr>
<tr>
<td></td>
<td>Mes_fib7_F</td>
<td>5’-AGAGACAATGAGGCTGGTATG-3’</td>
<td>c. 570</td>
<td>Current study</td>
</tr>
<tr>
<td></td>
<td>Mes_fib7_R</td>
<td>5’-TGGGACACGTGTCTTGGGTC-3’</td>
<td></td>
<td>Current study</td>
</tr>
</tbody>
</table>

Figure 1 The locations of *Mesalina* samples used in the study of the historical biogeography of the lacertid lizard in North Africa and the Middle East. The code for each sample comprises the species code (given in parentheses in the figure key) and the specific sample code (depicted on the map). The dashed line represents *Mesalina*’s approximate distribution (Sindaco & Jeremičenko, 2008).
Alignment

The alignment for the coding gene cyt b was performed with MAFFT 6 (Katoh & Toh, 2008) (http://align.bmr.kyushu-u.ac.jp/mafft/online/server) under the default settings. Subsequently, the cyt b nucleotide alignment was translated into amino acids and did not show any stop codons or indels. The nuclear and 16S sequences were aligned using Fast Statistical Alignment (Bradley et al., 2009), an approach that effectively reduces false-positive alignments, thus producing a ‘safer’ alignment for genes with high indel expectancy (such as non-coding genes or introns). Two datasets were formed: one concatenated for the two mtDNA loci for all the samples used in this study (193 ingroup and nine outgroup samples), and one for the nuclear locus (56 ingroup and one outgroup samples).

Model selection

The best-fit model of DNA substitution was chosen for each gene with jModelTest 2.1.1 (Darriba et al., 2012). The program was run under the following likelihood settings: three substitution schemes, base frequencies estimation, gamma shape and invariable sites estimation, which made a total of 24 models. The models including both a gamma distribution and invariable sites were ignored (Yang, 2006), thus the number of models available was reduced to 18. The models were evaluated using the Bayesian information criterion (BIC), which is considered to be the most accurate in jModelTest (Darriba et al., 2012) under the NxL sample size mode.

Phylogenetic analysis

Bayesian inference (BI) and maximum likelihood (ML) analyses were performed. For both analyses, nucleotides were used as discrete, unordered characters. BI was carried out using the software MrBayes 3.1.2 (Huelsenbeck & Ronquist, 2001). The analysis was performed with four runs for 10^7 generations and eight chains, and the current tree was saved to file every 100 generations. The performance of the runs was visualized using Tracer 1.5 (Rambaut & Drummond, 2009). The first 10^4 trees (10%) were discarded as ‘burn-in’ and a majority rule consensus tree was calculated from the remaining trees. The posterior probabilities were calculated as the percentage of samples recovering a clade ($\geq 95\%$ indicated significant support) (Huelsenbeck & Ronquist, 2001). Two analyses were performed, one for the mtDNA (partitioned by gene) and one for the nuclear dataset.

Two ML analyses were carried out using RAxML 7.2.7 (Stamatakis, 2006) under the GTRGAMMA model. To ensure that the inferred ML tree was not a local optimum, 200 ML searches for each dataset were conducted. The Robinson–Foulds (RF) symmetric distance was employed to assess the topological similarity between these trees (Robinson & Foulds, 1981). The confidence of the branches of the best ML tree was assessed further based on 1000 rapid bootstrap replicates (under the GTRCAT model). The analysis was performed for both the mtDNA (partitioned by gene) and the nuclear dataset.

Divergence times

mtDNA cluster delimitation

The mtDNA dataset was used to estimate divergence times. In order to standardize molecular clock rates (Ho et al., 2011), the sequence variation of the mtDNA dataset was divided into intra- and interspecies groups using the generalized mixed Yule–coalescent (GMYC) model (Pons et al., 2006). The analysis was carried out using the R package SPLITS (SPecies Limits by Threshold Statistics; http://r-forge.r-project.org/projects/splits/) with both single and multiple-threshold methods. The ultrametric tree required for the analysis was built for the full mtDNA dataset after removing identical haplotypes. The tree search was performed with RAxML, as described above (i.e. the best out of 200 ML trees was chosen), and was converted to ultrametric using penalized likelihood with the TN algorithm with $8\sigma_{1.8}$ (Sanderson, 2003). The optimal smoothing parameter (evaluated to 1) was selected by cross-validation as described in the 8σ manual.

Divergence times of Mesalina were estimated using BEAST 1.7.2 (Drummond & Rambaut, 2007) and one representative sample per ‘species group’ defined by GMYC. The dataset was realigned, and the best-fit substitution model was recalculated. The analysis was run for 5×10^7 generations with a sampling frequency of 1 per 1000 trees, from which 10% were discarded as burn-in. The models and prior specifications that were applied were as follows (otherwise by default): 16S, GTR+G; cyt b, HKY+G; relaxed uncorrelated lognormal clock (estimate); Yule process of speciation; normal prior distribution for all calibration points.

With the lack of internal calibration points for Mesalina, we used ‘external’ ones to estimate the divergence times of the genus. The ages of the Canary Islands (reflecting the separation of the species of the genus Gallotia) were used as the primary calibration points, as in previous lacertid phylogenies (Arnold et al., 2007; Cox et al., 2010; Šmíd & Frynta, 2012). In order to cross-check the estimated times, we followed an independent strategy by using the separation of the island of Crete from the Peloponnesse, reflecting the separation of Podarcis cretensis from Podarcis peloponnesiacus (Poulakakis et al., 2003), along with the estimated times of the Iberian Podarcis (Kalizontzopoulou et al., 2011). A third analysis was conducted with all available calibration points (Table 2). Finally, we performed a fourth analysis similar to the third, but adding the available nuclear sequences (under the HKY+G model) to the mitochondrial dataset (see Appendix S2).
The results of all the analyses performed with BEAST were analysed in Tracer. The annotations of the maximum clade credibility tree were computed in TreeAnnotator 1.7.2 (Drummond & Rambaut, 2007).

Ancestral area reconstruction

Bayesian binary Markov chain Monte Carlo (MCMC) (BBM) implemented in rasp (Yu et al., 2010) was employed to reconstruct the possible ancestral distribution areas of Mesalina. We used the mitochondrial ultrametric tree inferred by BEAST as input to the program, after trimming all outgroup taxa except Eremias. The distribution range of Mesalina was divided into two main areas, Africa and Arabia/Middle East (the root distribution was set to outgroup distribution). Ten MCMC chains were run in two independent analyses for 5 × 10⁶ generations under the JC+G (Jukes–Cantor + gamma) model. The state was sampled every 100 generations.

RESULTS

Alignment

A total of 1051 base pair (bp) alignments for the two mtDNA loci (16S, 590 bp; cyt b, 461 bp) was obtained for the total mtDNA dataset. The ingroup alignment contained 386 variable sites, increasing to 441 when the outgroup taxa were included. The length of the nuclear alignment was 957 bp for 64 sequences. It contained 186 and 227 variable sites for the ingroup and the whole alignment, respectively. β-fibint7 was indel rich and the size of indels varied from 1 to 93 bp (between M. watsonana and all other sequences).

Phylogenetic analysis

Mitochondrial dataset

BI was run under the GTR+G model for both partitions. Three of the parameters, shape parameter (alpha), relative partition rates (m) and tree length (TL), resulted in a double-peak posterior distribution for three out of the four runs of the analysis. The TL (in all four runs) was one order of magnitude larger than that inferred by ML. The phenomenon of long tree solutions and unexpected values for m and alpha has been reported previously in BI with no necessary effect on the optimization of the tree topology (Marshall, 2010). In the present case the BI topology was congruent with the best ML tree (log-likelihood, \(\ln L = -13217.86 \)) drawn from the 200 ML inferences (Fig. 2). The topological variance among the 200 ML trees based on the RF distances was low (0.09).

Our results suggest that Mesalina is monophyletic under both Bayesian and ML conditions of analysis. Mesalina guttulata is paraphyletic with respect to M. bahaeldini, whereas M. olivieri, M. pasteurii and M. simoni are polyphyletic. The phylogenetic tree was divided into four well-supported clades. The M. watsonana lineage had high statistical support, 1.00 and 100 posterior probability (PP) and bootstrap support (BS), respectively, and occurred in the easternmost part of the Mesalina distribution (Fig. 2). The relationship of the remaining three clades, (1) M. martini, (2) the M. guttulata complex, which included M. guttulata and M. bahaeldini,
with allies (i.e. M. brevirostris, M. rubropunctata, M. adramitana, M. kuri and M. balfouri), and (3) the M. olivieri complex, which included M. olivieri, M. pasteuri and M. simoni, was not resolved by any of the analyses.

Nuclear dataset

BI (under the HKY+G model) and ML analyses resulted in similar topologies (lnL = −4305.41 and −4216.81, respectively) that were partially congruent to the mtDNA tree. The topology of β-fibint7 was divided into three clades that supported the three main groups within the genus: (1) M. watsonana (100 BS, 1.00 PP); (2) M. guttulata and allies (80 BS, 0.98 PP); and (3) the M. olivieri complex (61 BS, − PP). Mesalina martini appeared to be nested within the clade of the M. olivieri complex, but with low statistical support (Fig. 3).

Divergence times

GMYC analysis identified 73 and 74 independently evolving mtDNA lineages under the single (logLnull = 84.43596, logL_{GMYC} = 93.42465, P = 0.0004) and multiple (logL_{GMYC} = 97.93994, P = 0.0001) threshold options. Given that none of the results was significantly better and the single-threshold version of the method outperformed the multiple-threshold version (Fujisawa & Barraclough, 2013), we employed the results of the single-threshold version (see Appendix S3).
All four independent beast runs (three based on mtDNA: Fig. 4; one based on mtDNA with nuclear sequences: Appendix S2) produced a congruent topology with the tree inferred for the complete mtDNA dataset (Fig. 2). Trace plots indicated that all analyses had reached convergence for all parameters with good mixing (effective sample size >200). All calibration strategies resulted in similar estimations for the divergence events of the genus (Fig. 4, Appendix S1). The data suggested that the origin of Mesalina dates back as early as the Miocene (c. 22 Ma), with M. watsonana diverging from the other Mesalina clades at that time. Subsequent cladistic events (Fig. 4) leading to the currently recognized species or species complexes occurred in the middle to late Miocene.

Ancestral area reconstruction

The two runs of the BBM analysis for the major nodes of the tree produced identical results, with a 0.0003 distance between them (Fig. 4). These data suggested that Mesalina species originated somewhere in Arabia/the Middle East, with the exception of the M. olivieri species complex, which may be of African origin.

DISCUSSION

Mesalina shows high genetic diversity and marked incongruence of phylogeny with currently accepted systematics (para/polyphilies at species level), for both mtDNA and nuclear datasets. The unresolved phylogeny inferred by the nuclear gene compared with the mtDNA analysis may be explained by the slower rate of evolution and incomplete lineage sorting of ancestral polymorphism for the nuclear genes (Moore, 1995). This phenomenon has been reported elsewhere for other lacertid lizard species (Pinho et al., 2008; Fonseca et al., 2009).

Systematic implications

Even though the systematic implications for the status of the genus are beyond the scope of the present study, it is worth noting that the loci used are highly diversified among M. guttulata, M. brevirostris, M. olivieri and M. watsonana, indicating the presence of species complexes. This diversity agrees with previous phylogenetic studies of the genus (Mayer et al., 2006; Kapli et al., 2008; Smid & Frynta, 2012). The morphological and ecological variation within these four taxa (Moravec, 2004; Werner & Ashkenazi, 2010) or the whole genus (Arnold, 1986) corroborates that hypothesis. Several studies on reptiles have reported complex phylogenetic patterns and extensive incongruence with the current systematic hypothesis in North Africa and the Middle East (Fonseca et al., 2009; Pouyani et al., 2010; Gonçalves et al., 2012), suggesting that the biodiversity of the area has been underestimated.
Phylogeography

The estimated divergence times support the initial differentiation of Mesalina in the early Miocene (c. 22 Ma), which is almost 6 Myr earlier than previous estimations (Šmid & Frynta, 2012) and 2 Myr prior to the formation of the Gomphotherium land bridge (Rögl, 1999). Our data suggest an earlier divergence of the family (Table 2) prior to any connection between Arabia and Eurasia. The latter event is associated with the origin of Ereimiadini, a tribe of Lacertinae that includes Mesalina, which is thought to have first dispersed into Arabia at this time (Arnold et al., 2007; Pavlicev & Mayer, 2009).

The estimated divergence times and thus the historical scenario proposed in the present study differ from previous studies (Kapli et al., 2008; Šmid & Frynta, 2012), potentially because we included representatives for a substantial number of new lineages and distribution areas. A simplified illustration of the proposed biogeographical scenario is presented in Fig. 5. A short-term connection between Arabia and Eurasia prior to the Gomphotherium land bridge allowed mammalian taxa to disperse from Africa into Eurasia (Harzhauser et al., 2007). Our estimation for the initial split of the genus (c. 21.6–22.2 Ma) coincides with this phase. One lineage of the genus (currently recognized as M. watsonana) remained in Eurasia, while another lineage dispersed into Arabia giving rise to the remaining currently recognized Mesalina species. Subsequent tectonic events in the collision zone (Popov et al., 2004) and the uplift of the Zagros Mountains (Agard et al., 2011) prevented the two lineages coming into contact again. A similar scenario has been proposed for the viper Echis carinatus, which was isolated in Asia c. 20 Ma (Pook et al., 2009).

The second major splitting of the Mesalina genus occurred at c. 16–17 Ma, which coincides with both tectonic and climatic changes in the area. During this period, the Arabian plate experienced a major transgression (Popov et al., 2004; Autin et al., 2011), which was coincident with a drastic decrease in temperature following the mid-Miocene climatic optimum (c. 15–17 Ma) (Zachos et al., 2001). One lineage

Figure 4 Calibrated tree as inferred by BEAST, based on the mitochondrial data of the 73 representatives of Mesalina’s ‘species groups’ defined by the generalized mixed Yule–coalescent (GMYC) model. The numbers on the branches indicate the median divergence times estimated according to the first (using separation times among species of the subfamily Gallotinae), second (using separation times among species of the genus Podarcis) and third (a combination of all calibration points) calibration strategies. The results of the ancestral area reconstruction are given for the main nodes of the tree; the upper semicircle is proportional to the possibility that the corresponding clade originated in Arabia/Middle East and the lower is proportional to the possibility that it originated in Africa. Abbreviations as in Fig. 2.
potentially dispersed into Africa, leading to the *M. olivieri* complex, while its sister clade remained in Arabia. Future studies using additional samples and loci may help resolve the position of *M. martini*.

The complex history of the Arabian Plate has been considered the driving force for the divergence of other reptile taxa (Amer & Kumazawa, 2005; Pook et al., 2009; Metallinou et al., 2012) in the early and middle Miocene. In studies of *Echis* (Pook et al., 2009) and *Stenodactylus* (Metallinou et al., 2012), the estimation of the divergence events were older (19.4 and 21.8 Ma for the two genera, respectively) than *Mesalina* (c. 16–17 Ma), coinciding with the intense volcanism occurring throughout the Red Sea (c. 24 Ma) and the subsequent rifting (c. 20 Ma). The divergence of the African clades of *Uromastyx* from the Arabian clades is estimated to be more recent (11–15 Ma) concurrent with climatic changes (Amer & Kumazawa, 2005). Overall, the opening of the Red Sea has been a multiphase process (Popov et al., 2004), with volcanic events occurring since the late Oligocene until the initiation of the spreading in the early Miocene (c. 19–18 Ma). Consequently, variable divergence times that correspond to the volatile nature of the geology of the region at that period can be expected.

Mesalina guttulata and allies: the Arabian clade

Our results suggest that the origin of this clade is somewhere in Arabia/the Middle East in the mid-Miocene (c. 13–14 Ma). The early to middle Serravallian (c. 12–13 Ma) corridor (Jones, 1999 and references therein) may have allowed the dispersal of ancestral *M. rubropunctata* into Africa. The major cooling step after the mid-Miocene climatic optimum (14.1–14.8 Ma) and the resultant increased aridification of the mid-latitudes (Flower & Kennett, 1994) may have further induced the separation of *M. rubropunctata* from *M. guttulata*.

During the late Serravallian–Tortonian (c. 11–9 Ma), two land bridges are assumed to have connected Arabia and Africa: one in the north, in the area of Sinai, and one in the south, in the Gulf of Aden (Jones, 1999). Two dispersal events using these two routes could explain the current distribution of *M. guttulata*. In accordance with this hypothesis, the subsequent opening of the Gulf of Aden in the south and the formation of the Nile River later in the north (Goudie, 2005) may have prevented the populations reuniting. This period is known for major mammalian dispersal events, induced by both climatic changes and intercontinental relationships (Elewa, 2005). Climatic change in the circum-Mediterranean (Elewa, 2005 and references therein) could have been the driving force for both the dispersal of the ancestral *M. guttulata* populations as well as the parallel splitting of *M. brevirostris* from the rest of the Arabian lineages (i.e. *M. kuri*, *M. balfouri* and *M. adramitana*). Further splitting of the North Arabian *M. guttulata* populations (*M. bahaeldini* and the two *M. guttulata* lineages in Jordan) was probably the result of the Suez rift, the opening

Figure 5 Simplified illustration of the proposed biogeographical scenario for the historical distribution of *Mesalina* in North Africa and the Middle East.
of the Dead Sea, and the Wādi ‘Araba line. The latter is located along the fault separating Africa and Arabia, and it plays a filtering role in faunal movement from and to Africa because of its extremely arid conditions (Arnold, 1987; Disi et al., 2001). The mid-Pliocene aridification shift (c. 3.2–2.6 Ma; DeMenocal, 2004) probably worsened the conditions of Wādi ‘Araba making it impossible to inhabit. Assuming that *M. guttulata* populations were present in the area prior to the aridification shift, the subsequent extreme arid conditions of the Wādi ‘Araba could have split them into eastern and western populations. *Mesalina brevirostris* and *M. rubropunctata* failed to cross the fault westwards and eastwards, respectively (Arnold, 1987), indicating that they reached the area later than its aridification. The restricted distribution of *M. brevirostris* in South Sinai (Baha El Din, 2006) is more likely to be the result of stepping-stone dispersal from the opposite Arabian shore (evidenced by the presence of *M. brevirostris* on the island of Tiran), rather than a crossing of the Wādi ‘Araba. *Mesalina olivieri*, on the other hand, is clearly present on both sides of the fault (Disi et al., 2001). It remains unclear whether the populations of the latter are isolated for reasons similar to the case of *M. guttulata*.

Mesalina olivieri species complex: the African clade

This complex forms two well-supported lineages, one occupying the western part of the Maghreb region (Morocco, western Sahara and Mauritania) and the other extending from the Maghreb up to the Near East. Both lineages co-occur in Mauritania and Morocco. Similar dispersal patterns have been reported for the three main lineages of *Agama* lizards that co-occur in Mauritania (Gonçalves et al., 2012). Both *Agama* and *M. olivieri* distribution patterns could be explained by the fact that mountainous areas such as Morocco and Mauritania may have acted as ‘climatic islands’, serving as refugia during drastic climatic changes (Schleich et al., 1996; Pepper et al., 2011; Brito et al., 2013).

The major split of the *M. olivieri* complex is estimated to have occurred c. 8 Ma. A similar divergence event has been reported for *Agama*, with *A. tassiensiis* diverging from the *A. boueti* and *A. impalearis* sister clade at 8.15 Ma (Gonçalves et al., 2012). Both events coincide roughly with the global transition from humid- (*C₃*) to arid-adapted (*C₄*) vegetation, which was initiated at about 7.8 Ma (Cerling et al., 1997; Zachos et al., 2001). The diversification of other dry-adapted North African reptiles (e.g. *Acanthodactylus*, *Stenodactylus* and *Agama*) has also been estimated to have occurred in the late Miocene (Fonseca et al., 2009; Gonçalves et al., 2012; Metallinou et al., 2012). Thus our data support reports by previous authors (Carranza et al., 2008; Metallinou et al., 2012) that desert conditions prevailed in the Miocene and allowed xerophilic fauna to radiate.

Tunisian populations have been found to form a distinct lineage in many North African reptile and amphibian species (Recuero et al., 2007; Carranza et al., 2008; Kaliontzopoulou et al., 2011). In the case of *M. olivieri*, the isolation of the Tunisian population was estimated to have occurred in the Messinian period. In the late Miocene, major orogenetic events occurred in the area (Bouaziz et al., 2002), potentially causing a vicariance event between Tunisian and other North African populations. This area seems to support a distinct biogeographical unit within North Africa, regardless of the events that pre-date reptile lineages in Tunisia.

Finally, the colonization of the Middle East by populations of *M. olivieri* was potentially facilitated during the desiccation of the Negev, which occurred in the Pleistocene and lasted about a million years (Baha El Din, 2006).

CONCLUSIONS

The genus *Mesalina* may be divided into three main geographical groups according to the origin and distribution of the species or species complexes: (1) Iran–Afghanistan–Pakistan (*M. watsonana*); (2) Arabia and the Near East (*M. guttulata* species complex, *M. brevirostris*, *M. balfouri*, *M. adramitana* and *M. kuri*) with related taxa of African radiation (*M. rubropunctata* and a substantial part of the *M. guttulata* species complex); and (3) North Africa (*M. olivieri* species complex, with possible inclusion of *M. martini*). Similar clustering has been identified in other reptile taxa with similar distributions (e.g. *Echis*, *Uromastyx* and *Stenodactylus*). The movement of the Arabian Peninsula appears to have initiated the main diversification event reported for all the corresponding studies. In this particular case, the changing geography of the Arabian Peninsula appears to have allowed the dispersal of *Mesalina* back and forth from Africa to Arabia, multiple times.

Both Africa and Arabia are characterized by vast lowlands that, in periods of extreme climate conditions (i.e. aridity and low temperatures), do not form suitable habitats even for desert-adapted taxa. Potentially this is the reason why most of the diversity is concentrated in the mountainous areas (e.g. Morocco, Mauritania, Yemen and the western coast of Saudi Arabia), which served as refugia (Schleich et al., 1996; Brito et al., 2013) during hyper-arid periods, as has been documented for the Australian mountains of the arid zone (Pepper et al., 2011). Both globally and in the study area (Zachos et al., 2001; Le Houérou, 2003; Schuster et al., 2006), climatic changes, towards colder/more arid conditions, have occurred multiple times after the mid-Miocene climatic optimum, playing a key role in the speciation patterns of the reptile fauna inhabiting both North Africa (Brito et al., 2013) and Arabia.

ACKNOWLEDGEMENTS

We are grateful to T. Papenfuss, M. Khalidi, M. A. Carretero, D. J. Harris, S. Carranza, W. Böhme and P. Wagner for donating samples to this study, and to M. Beddek for laboratory work. We thank D. Poursanidis for GIS support, A. Stamatakis and the Exelixis Lab for fruitful discussions on the analyses, T. Pinou (Western Connecticut State University,

10 Journal of Biogeography © 2014 John Wiley & Sons Ltd
USA) and C. Mylonas (Hellenic Center for Marine Research) for improving the English of the manuscript and for valuable comments, and J. Smid and two anonymous referees for their valuable comments and constructive suggestions on the manuscript. This study was partially funded by the Special Account for Research, University of Crete (KA3009). J.C.B.’s fieldwork was partially supported by grants from the National Geographic Society (Commission on Research and Exploration, grants 7629–04 and 8412–08) and by Fundação para Ciência e Tecnologia (PTDC/BIA-BEC/099934/2008) through the EU program COMPETE. J.C.B. was supported by Programa Operacional Novo Norte ON2.

REFERENCES

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:

Appendix S1 Geographical origin of samples and GenBank accession numbers.

Appendix S2 Divergence times based on both mitochondrial and nuclear data.

Appendix S3 The mitochondrial DNA clusters recognized by the GMYC model under the single threshold option.

BIOSKETCH

Paschalia Kapli’s interests are molecular phylogenies that address questions of species evolution, speciation processes and historical biogeography.

Author contributions: P.K. obtained the sequences, analysed the data and wrote the manuscript; N.P. and P.L. designed and supervised the research and refined the manuscript; P.A.C. contributed substantially in conducting the research and improving the manuscript; all authors collected or provided samples, read and improved the final manuscript.

Editor: Luiz Rocha