Zootoca vivipara as a model for testing evolutionary transition from oviparity to viviparity

Luca Cornetti1,2, Andrea Benazzo2, Mike W. Bruford3, Giorgio Bertorelle2, Cristiano Vernesi1

1Dept. of Biodiversity and Molecular Ecology, Research and Innovation Center, Fondazione Edmund Mach, Trento, Italy
2Department of Evolutionary Biology, University of Ferrara, Italy
3School of Biosciences, Cardiff University, Cardiff, UK

Introduction

The lizard Zootoca vivipara is one of the few examples in Nature which shows, within the same species, populations with different reproductive modalities. Oviparous populations live in the southern part of its distributional range (the newly discovered Z.\textit{carniolica} in Eastern-Italian Alps and Z.\textit{louisianzti} in the Pyrenees), while viviparous subspecies (e.g. Z.\textit{vivipara} and Z.\textit{sachalinensis}) are widely distributed from British Isles and central France to Scandinavia and north-eastern Asia [1,4]. This species is, therefore, particularly well suited for studying the evolutionary shift in reproductive mode.

Results and Discussion

Bioinformatic analysis performed using the pipeline software Stacks produced about 100.000 local alignments and about 260.000 Single Nucleotide Polymorphisms (SNPs). In order to minimize the total number of missing data, we selected 19.013 SNPs. These markers were used to describe the overall genetic variation between subspecies. The result of MDS (Fig.2) seems to confirm [according to [1,3]] the existence of two parapatric oviparous clades (Z.\textit{v.carniolica} and Z.\textit{v.louisianzti}) and one viviparous clade (composed by Z.\textit{v.vivipara} and Z.\textit{sachalinensis}). Additionally, a Minor Allele Frequency Spectrum has been calculated dividing the whole dataset according to the phenotype (Viviparous/Oviparous). This analysis allows to underline polymorphisms that show low frequency in one phenotype and high frequency in the other, and vice versa. About 2.000 SNPs were selected according to MAFS. Furthermore, these polymorphisms were analyzed with TASSEL software [3,4] using GML method to test for significant association between genotypes and phenotypes. After multiple-comparison correction, 289 SNPs showed a significant association with phenotype.

Genomic sequences (200-500 bp long, achieved with Illumina Paired-end protocol) physically linked to these markers were BLASTed against the whole NCBI Nucleotide Collection, with particular interest in looking for sequence similarities in Anolis Carolinensis genome (the only reptile genome available at the moment). Results are summarized in Figure 5 and Table 1.

Materials and Methods

A Next Generation Sequencing technique has been used to analyse 40 samples of Zootoca\textit{vivipara} to cover the overall genetic variation of the species. RADtag sequencing (Fig.1) uses Illumina HiSeq technology to simultaneously discover and analyse thousands of SNPs at genome level [5,6]. Bioinformatic analyses have been conducted using the pipeline software Stacks v0.9995 [6].

Fig.2 Multidimensional Scaling based on genetic distances between individuals according to 19k SNPs

Fig.5 Pie-chart that summarizes sequence categories obtained by BLASTing about 300 genomic sequences (250 of them were unknown)

Table 1. Some examples of genes with high values of sequence similarity with sequences selected in Zootoca\textit{vivipara} according to TASSEL and MAFFS

Conclusions

Looking for genes and markers showing signals of selection is becoming relatively straightforward with the advent of NGS; RADtag, together with Paired-end sequencing, is a useful method to assemble millions of genomic reads into contigs which can be compared to known sequences in existing databases. However, not all genes can be identified, since non-model species may contain unknown genes or the closest reference genome may not be available. In Zootoca\textit{vivipara}, the matching proportion of contigs physically linked to SNPs which show signal of selection is around 14%. This value decrease to 6% when the entire dataset of contigs is analyzed. However, about 20 conserved genes have been identified as possibly related to the two different reproductive modalities. In order to investigate this topic, previous studies have been mainly focused on differential gene expression between mammals and viviparous squamate reptiles [7,8]. Evolution of viviparity poses a major immunological hurdle for mother and foetus. For instance, cytokines (interleukin-1α and IL-1β) are responsible of maternal-foetal tolerance so they play a role in mammals and viviparous squamates. Tool-like receptor, identified in this study, together with the interleukin-1 receptor forms a receptor superfamily, an important molecule in immune system. Moreover, genes like HSPB1 and HoxA5 may be involved in the placenta development of both mammals and reptiles. Hormone receptors have, for sure, an essential role in evolution of viviparity, in fact they may regulate follicular development and ovum maturation [7,8]. One example of this category has been identified in this study (Tab.1).

So far, only gene-by-gene or protein-by-protein approaches have been taken. This study is the first attempt to analyze the oviparity/viviparity transition at genomic level, with the consciousness that this is a very complex physiological process, probably mediated by thousands of genes.

References

Acknowledgments

We would like to thank Johnstone and Company for funding the ACE-SAP project.