A tentative species list of the European herpetofauna (Amphibia and Reptilia) — an update

JEROEN SPEYBROECK1,4, WOUTER BEUKEMA2 & PIERRE-ANDRÉ CROCHET3

1Research Institute for Nature and Forest, Kliniekstraat 25, B-1070 Brussels, Belgium
2Department of Animal Management, University of Applied Science van Hall-Larenstein, Agora 1, NL-8934 CJ Leeuwarden, the Netherlands. E-mail: wouter.beukema@war.nl; wouter_beukema@hotmail.com
3CNRS-UMR 5175 Centre d’Ecologie Fonctionelle et Evolutive, 1919, Route de Mende, F-34293 Montpellier cedex 5, France E-mail: pierre-andre.crochet@cefe.cnrs.fr
4Corresponding author. E-mail: jeroen.speybroeck@inbo.be; jeroenspeybroeck@hotmail.com

Abstract

Research on the taxonomy of European amphibians and reptiles has increased noticeably over the last few decades, indicating the need for recognition of new species and the cancellation of others. This paper provides a critical review of recent changes and draws up a tentative species list.

Key words: amphibians, reptiles, taxonomy, nomenclature, review, Europe

Introduction

The steady accumulation of European herpetological literature during the 18th and 19th century permitted the early compilation of species lists, which initially comprised mostly nations and often did not combine reptiles and amphibians (e.g. Bonaparte 1840; Bocage 1863; Böttger 1869; de Betta 1874; Camerano 1884). Schreiber (1875) was the first to assemble a list of both reptiles and amphibians of Europe (including western Russia) which recorded 97 species. The rise of intensified herpetological research in Europe during the 20th century, eventually combined with systematic studies based on phylogenetic relations, created the need for multiple revisions of the European herpetofauna list. While Mertens and Müller (1928) and Mertens and Wermuth (1960) may have well served as the initial contemporary baseline, revisions were given by Arnold et al. (1978), Engelmann et al. (1993), Dubois (1998) and Arnold and Ovenden (2002). Recent taxonomical updates were given by e.g. Danflous et al. (2004) and Crochet and Dubois (2004). A tentative updated overview of European amphibian and reptile taxonomy was provided by Speybroeck and Crochet (2007). In the meantime, research activities have continued intensively, feeding the need for this new update. Our emphasis is on species and higher level changes, dealing with subspecific taxonomy only in a limited number of cases of special interest.

We keep to the same —subjectively— delimited geographical area as Speybroeck and Crochet (2007): geographic Europe without former Soviet republics. As a consequence, species occurring only on Asiatic or African islands politically belonging to European countries are omitted. These islands include among others the Greek isles east of the mid–Aegean trench. For instance, Karpathos is considered Europe, while Lesbos, Chios, Samos, Rhodes, Symi, among others (with numerous Anatolian fauna elements like Anatololacerta spp., Trachylepis aurata, Blanus strauchi) are considered to be Asian islands. The Canary Islands, Azores, Selvagens, Madeira, Alborán and Lampedusa, Pantelleria and nearby islets are geographically considered as parts of the African continent.

Issues that were discussed by Speybroeck and Crochet (2007) and which are not reassessed or elaborated any further below, remain as such, pending further research. Authorship and year for family, genus and
species nomina—as given in the species list—have been cross-checked with multiple papers, books and online resources. We will not go into detail on the related issues, while generally the same uncertainties as those previously listed by Speybroeck and Crochet (2007) remain.

We have tried to strictly follow the rules of the International Code of Zoological Nomenclature (the Code hereafter, International Commission on Zoological Nomenclature 1999) for nomenclature at the species, genus and family level.

Nomina of taxa above the species rank are currently not regulated by the Code (see Dubois 2005). This results in many uncertainties and ample debate concerning the correct nomina to be used for higher-ranked taxa. As no “official” way exists to settle these uncertainties and to attribute authorship to higher-rank nomina, we have simply provided the commonly used nomen (or alternative nomina in case of conflicting views) for taxa above the family rank.

The general nature and intent of our paper can be adequately illustrated by our agreement—in part—with two predominantly contrasting viewpoints, raised in the discussion following the publication of The Amphibian Tree of Life (Frost et al. 2006). We largely agree with Pauly et al.’s (2009) basic assumption that all accepted taxa should be “well-established and strongly supported clades that are inferred under multiple analyses and from various data sources” and that “the scientific name of the species (genus-species combination) should only be changed when there is strong evidence that the changes are necessary to reflect evolutionary history”. On the other hand, we do not believe in strenuous conservatism either, agreeing with Frost et al. (2009) that taxon partitioning is often an unavoidable consequence of systematics research: non-monophyly must be avoided for taxa above the species rank.

For species level systematics, we generally adhere to the biological species concept, as we believe that speciation is really the gradual evolution of intrinsic reproductive barriers that allow species to persist as distinct evolutionary lineages, independently of geographic isolation. Our conception of species is thus similar to the “genotypic cluster definition” of Mallet (1995): “speciation is the formation of a genotypic cluster that can overlap without fusing with its sibling”. Successful hybridisation is not per se an argument against species rank, as long as the barriers to interspecific gene flow are strong enough so that hybridisation does not mix the hybridising genomes (see Mallet 2005, 2008). Hence, to identify species, we prefer to put more emphasis on reproductive isolation between sympatric or parapatric taxa, rather than on other proposed properties of species such as diagnosability or monophyly. In other words, we do not believe that all evolutionary units should be treated at species rank.

As already widely recognised, one of the main problems with the biological species concept is that it is difficult to test for reproductive isolation between allopatric populations. In that case, we use information on level of divergence (genetic, acoustic, and morphological) as a possible indication to infer the level of isolation of entities, if they were to meet naturally. We are perfectly aware that this is somewhat subjective. With reproductive isolation evolving in no predictable way or at no regular rate, no simple relationships between the level of divergence for any character and the level of reproductive isolation exist (e.g. Gourbière and Mallet 2010). However, in the absence of other sources of information, it is reasonable to assume that taxa which are as divergent (genetically, acoustically, or morphologically) as valid biological species within the same genus or family are better treated as valid species. Allopatric taxa whose divergence is comparable with divergence among subspecies are best treated as conspecific. This “consistency” approach is in fact widely used in systematics, albeit often implicit (see e.g. Sites and Marshall 2004 for more elaborate discussion on these issues and Alström et al. 2008 for an application in birds).

Facing the lack of a widely accepted genus concept, we have applied the same approach to the genus level. As a distinct genus, we tend to recognise monophyletic clades that are genetically as divergent as other widely accepted genera in the same group. This is usually the approach employed by authors of scientific papers. In most cases, our conclusions follow published decisions.

We wish to stress that this paper is merely a proposal for synthesis of recent changes based on published information. However, we hope that our proposed list might be considered valuable and that our conclusions might receive ample adoption or at least stimulate further debate.

Final content changes prior to manuscript submission were made in April 2010.
Caudata or Urodela

Different opinions exist on whether Caudata (e.g. Frost et al. 2006) or Urodela (e.g. Dubois 2004) should be used to refer to the the order of salamanders and newts.

A recent paper on the Salamandridae family taxonomy (Dubois and Raffaëlli 2009) proposed a number of systematic changes, many of which above and below the species level. Concerning species of European newts and salamanders, the proposed changes include treating six taxa as new species: Lissotriton graecus, L. meridionalis, L. maltzani, Salamandra aurorae, S. almanzoris and S. longirostris.

Dubois and Raffaëlli (2009) elevated L. v. graecus and L. v. meridionalis to species level, based on the results of Babik et al. (2005). They interpret these results as suggesting that if L. montandoni (Carpathian Newt) is recognised as a distinct species, Lissotriton vulgaris (Smooth Newt) as traditionally understood is paraphyletic. In fact, this seems to be a misinterpretation of Babik et al.’s (2005) results - the latter authors convincingly argue that the paraphyly of the mitochondrial haplotypes of vulgaris is caused by repeated introgression of vulgaris mitochondrial lineages into montandoni, resulting in the replacement of the original montandoni mtDNA by vulgaris mtDNA. Conclusively, L. vulgaris mtDNA is paraphyletic in relation to L. montandoni mtDNA, but this is probably not true for the species themselves.

Indeed, even while both graecus and meridionalis (in addition to several other Anatolian and Caucasian subspecies) are distinct in molecular (mtDNA: Babik et al. 2005, nuclear DNA: Kalezić 1983; Kalezić and Tucić 1984) and morphological (Schmidtler and Franzen 2004) features (however, mainly based on male secondary sexual characters - Raxworthy 1990, but see Pellarini and Lapini 2000), Babik et al. (2005) revealed high levels of mtDNA introgression in contact zones between several subspecies/lineages, including both graecus and meridionalis, and a general lack of concordance between subspecies limits, defined on the basis of mtDNA and morphological data. Although L. v. meridionalis is represented by a single clade in peninsular Italy (albeit represented by only two samples), Istrien and Slovenian populations which have been attributed to this taxon based on morphology and allozymes (Schmidtler and Franzen 2004), seem to belong to L. v. vulgaris according to mtDNA data (Babik et al. 2005). Concerning L. v. graecus, the current northern parts of its distributional range seems to be introgressed by populations related to L. v. vulgaris, while Corfu represents a relictual lineage and sampling is lacking from central parts of southern Greece. Thus, despite a high level of mtDNA divergence and evidence of ancient diversification events between some subspecies in L. vulgaris (Babik et al. 2005), the available data do not allow drawing definite conclusions on these taxa. We therefore refrain from accepting graecus and meridionalis as full species until additional data on contact zones and wider geographical sampling of these taxa are presented.

The Algarve clade of Bosca’s Newt (Lissotriton boscai) found by Martínez-Solano et al. (2006) might deserve species rank, the name maltzani apparently being available for it (Montori et al. 2005), as already mentioned by Speybroeck and Crochet (2007). However, more sampling in (possible) transition zones and the study of nuclear genes and morphology seems required, prior to any new arrangement. The distinct clade found by Herrero (1991) also deserves further attention. Quoting Martínez-Solano et al. (2006): “(…) new data from independent sources are needed to clarify the taxonomic status of these two divergent lineages, and morphological and molecular studies including data on variation in nuclear markers will be particularly helpful in this respect. Variation in populations within L. boscai has been already studied from morphological and genetic perspectives, but previous studies have failed to include representatives of all the clades identified in our study (…)”. As no additional evidence seems to have been presented in the mean time, we agree with this. As such, we consider Dubois and Raffaëlli’s (2009) proposal to accept Lissotriton maltzani to be premature.

Elevating Salamandra atra aurorae to species rank, as the same authors do, seems quite clearly unwarranted, as — with little or no doubt — their acceptance renders the Alpine Salamander (S. atra) paraphyletic. Indeed, papers stating aurorae to be a sister group to all other atra populations (Steinfartz et al. 2000; Bonato and Steinfartz, 2005) have been contradicted by those including samples from northern Dinaric populations from Slovenia and Croatia (Ribéron et al. 2001, 2004). Dubois and Raffaëlli (2009) also accepted the subspecies S. a. prenjensis, restricting it to Bosnia and Herzegovina, Serbia, Montenegro and Albania,
“because it is isolated from the other populations in the non-Dinaric Alps and shows morphological differences from them, being smaller and slightly different in coloration”. Klewen (1988) and Guex and Grossenbacher (2003), however, consider these differences to fall within the intraspecific variation of S. atra and do not accept prenjesii as a separate taxon.

Dubois and Raffaëlli (2009) also consider *Salamandra salamandra almanzoris* to deserve species rank, rather than its conventional treatment as a subspecies of the Fire Salamander (*S. salamandra*). However, García-París *et al.* (2003) and Iraola and García-París (2004) suggest that *almanzoris* belongs to a main clade with *S. s. morenica* and *S. s. crespoi*, making it impossible to treat the former as a species without consequences for the status of the other taxa. Martínez-Solano *et al.* (2005) showed that *almanzoris* is more widespread than traditionally considered, being distributed over most of the mountains of the Spanish Sistema Central. They found that the genetic divergence in allozymes between *almanzoris* and *bejarae* is typical for intraspecific levels in amphibians and that allozymes, morphology and mtDNA provide contrasting results on the delimitation of those taxa, evidencing introgression in contact zones. Thus, we do not follow the proposal to elevate this taxon to species rank, which is clearly not the most divergent among the Iberian *Salamandra* lineages.

The more difficult case of *Salamandra (salamandra) longirostris* seems primarily to depend on where to draw the line based on mtDNA sequence divergence between allopatric taxa. Steinfartz *et al.* (2000) note 6.3% mtDNA divergence (control region sequences) between this taxon, *S. s. morenica* and *S. s. crespoi* versus all other subspecies of *S. salamandra*, but group *longirostris* together with *morenica* and *crespoi*. Corresponding divergence times were tentatively estimated at approximately 2–4 mya. Using a different mitochondrial gene (cytochrome b), García-París *et al.* (1998) found a basal position of *longirostris* in relation to all other Iberian lineages (including *morenica* and *crespoi*). 5.1%–5.7% sequence divergence between *longirostris* and the main clade. According to these authors, *S. (s.) longirostris* became isolated from other *Salamandra* taxa either by the Betic Strait in the Miocene, or during the Pliocene formation of the Guadalquivir river valley. Under this second (favoured) hypothesis, *longirostris* would have split 2.5–5.3 mya. In yet another study, Escoriza *et al.* (2006) place *longirostris* close to *S. inframaculata orientalis*, but admit that this sister taxon relationship may very well be an artefact. Additionally, we note that Dubois and Raffaëlli (2009) claim a close relationship between *longirostris* and *S. algira*, whereas this is in clear contrast to the findings of other authors (e.g. Steinfartz *et al.*, 2000; Donaire Barroso and Bogaerts 2003). Donaire Barroso *et al.* (2009) provided some additional data on the distinctiveness of the *longirostris* colour pattern. Although *longirostris* may well deserve full species rank, conflicting phylogenetic trees prompt us to maintain it as a subspecies until conclusive evidence is provided.

Following Schmidtler (2004), Speybroeck and Crochet (2007) and the online database “Amphibian Species of the World 5.3” have accepted that *Triturus* Rafinesque 1815 is a nomen nudum and thus nomenclaturally unavailable. However, this was clearly a mistake: as demonstrated by Dubois and Raffaëlli (2009), *Triturus* Rafinesque 1815 was a neonym (nomen novum) for *Triton* Laurenti 1768 and thus an available nomen. This means that authorship for this taxon remains 1815 and not 1820. We note that the rejection of the works of de la Cepède (International Commission on Zoological Nomenclature 2005) lead to attribution of some names to Bonnaterre, 1789. This was already adopted by Speybroeck and Crochet (2007) for e.g. the Southern Spectacled Salamander (*Salamandrina terdigitata*). As pointed out by Dubois and Raffaëlli (2009), this also holds true for *Salamandra salamandra terrestris*. Referral to the latter taxon by means of junior synonyms like *europaea* Bedriaga, 1883 seems therefore unwarranted.

Finally, we are reluctant to accept Dubois and Raffaëlli’s (2009) new subspecific arrangement of the Alpine Newt (*Ichthyosaura alpestris*), because we believe that mtDNA data alone are not sufficient for revising intraspecific systematics, and any proposal for changes seems currently premature. The same applies to Sotiropoulos *et al.* (2007): we are not (yet) convinced that the subspecies *inexpectata* should be abandoned. As a side comment, both Sotiropoulos *et al.* (2007 - mtDNA) and Canestrelli *et al.* (2006a - allozymes and mtDNA) uncovered a level of genetic divergence between peninsular Italian and continental European *Ichthyosaura* which is more typical of interspecific divergence than intraspecific variation in Caudata. Lack of
clear concordance between mtDNA clades and morphology, and absence of supporting evidence for the most basal lineages in Sotiropoulos et al. (2007) prevent us from adopting any systematic changes here, but we anticipate future splits when additional data will become available.

Two species in the genus Salamandrina - the Southern Spectacled Salamander S. terdigitata and the Northern Spectacled Salamander S. perspicillata - have been recognised in recent years, based on both mtDNA and nuclear markers (Mattoccia et al. 2005; Canestrelli et al. 2006b), apparently separated by the Volturno river. However, only a restricted number of samples was used and morphological data was lacking. Romano et al. (2009) presented evidence of morphological divergence between the species, based on body size and dorsal colouration differences. New localities and additional samples revealed a contact zone south of the Volturno River in northern Campania, where both species occur syntopically in several locations, but they remain distinct in terms of (at least) mtDNA.

Arntzen et al. (2007) found a high level of allozyme differentiation between Triturus carnifex carnifex (Italian Crested Newt) and T. c. macedonicus (Macedonian Crested Newt) (Nei’s genetic distance = 0.19, similar to the divergence between T. marmoratus and T. pygmaeus) suggesting a long (> 5 million years) separate evolution. As a consequence, they elevated the latter to species rank as Triturus macedonicus. Even more recently, Espregueira Themudo et al. (2009) elevated the European Southern Crested Newt to species rank as Triturus arntzeni (Arntzen’s Crested Newt). Forthcoming papers will have to delimit the geographical range of arntzeni and karelinii, as different sources of information give contrasting results (Olgun et al. in prep.; Wielstra et al. in prep.). As a consequence, it is unclear at present whether karelinii s.s. occurs in the area considered in our paper.

Carretero et al. (2009) issued an updated ‘lista patrón’ of the Spanish herpetofauna, as first released by Montori et al. (2005). In conflict with the rules of the International Code of Zoological Nomenclature, they reject Ichthyosaura (containing the species alpestris) on grounds of confusion with the prehistorical taxon Ichthyosaurus. As stated in the introduction, we firmly believe that the Code should be followed consistently, thus we advocate the use of this name over e.g. Mesotrton.

Frost (2009) attributes the name Ichthyosaura to Latreille in Sonnini de Manoncourt and Latreille, 1801. Dubois (2008) advocated attribution of nomina to the author name(s) as cited in the original publication. In this case, the book is authored by C.S. Sonnini and P.A. Latreille. As pointed out by Dubois and Raffaëlli (2009), the relevant part of this 4-volume work contains no specification on whether it was written by either author or both. In this part, singular (‘je’ = I) and plural (‘nous’ = we) are mixed up, while the part dealing with Proteus tritonius is written in plural. As Ichthyosaura was based on the latter taxon, we attribute this name to Sonnini and Latreille, 1801, as does Schmidtlter (2009). The latter also pointed out that the name is of female gender, therefore requiring accordingly inflected subspecies names (e.g. apuana, inexpectata, serdara, …), regardless of their validity.

As discussed in Speybroeck and Crochet (2007) and in contrast to a number of recent papers (e.g. Carranza et al. 2008a; van der Meijden et al. 2009), we extend the use of the genus name Speleomantes for the European cave salamanders. Nasgetti et al. (1996) found a huge genetic distance between the Californian Hydromantes shastae and the Sardinian Speleomantes genei (Gené’s Cave Salamander; D_{Nei} 3.38) and S. imperialis (Scented Salamander; D_{Nei} 3.92), and all available studies resolve the European species as a monophyletic clade. Wake et al. (2005) proposed the genus name Atylodes for Speleomantes genei, which can be used at genus or subgenus level (Crochet 2007). Vieites et al. (2007) proposed to use Atylodes, Speleomantes and Hydromantes at the genus level. However, van der Meijden et al. (2009) could not find a strongly supported (basal) position for genei. Consequently, using Atylodes as a valid taxon may render Speleomantes paraphyletic. We thus refrain from using this name at any level.

Carranza et al. (2008) elevated the Sette Fratelli Cave Salamander from southeastern Sardinia to species rank as Speleomantes sarrabusensis. The still unnamed “subspecies B” of Speleomantes genei was shown to be more widespread (van der Meijden et al. 2009) than previously assumed (Lanza et al. 2005). Van der Meijden et al. (2009) confirmed that the genetic distance between the A and B genei taxa is of a magnitude that could warrant treatment of both taxa as separate species. Furthermore, their easternmost sample of Speleomantes imperialis (Lago Omodeo area) appeared quite distinct from their other imperialis samples.
Taxonomic consequences, however, remain premature, pending more range-wide sampling, including samples of the central parts of the species’ range. On the other hand, the results of van der Meijden et al. (2009) confirmed that the current systematics of the *italicus* - *ambrosii* group (Italian and Ambrosi’s Cave Salamander) is probably inadequate: in their phylogenetic tree, specimens of *S. ambrosii ambrosii* are more closely related to specimens of *S. italicus* than to specimens of *S. ambrosii bianchii*. Based on extensive introgression in contact zones (Lanza et al. 2005), it might be better to treat *ambrosii* as a subspecies of *italicus*. However, we refrain from proposing any formal change for the time being.

Anura

Hofman et al. (2007) and Zheng et al. (2009) investigated the phylogeography of fire-bellied toad species (*Bombina*). Their mtDNA data showed *Bombina pachypus* (Italian Yellow-bellied Toad) to be nested within *B. variegata* (Yellow-bellied Toad) lineages, with Carpathian populations occupying the most basal position within the phylogeny of *variegata* s.l. Pending more detailed studies of genetic variation and level of introgression in contact zones in this complex, we prefer to consider this Italian taxon at subspecies rank as *Bombina variegata pachypus*, rather than treating it as a full species.

Gonçalves et al. (2009) established high levels of genetic divergence within the Iberian Midwife Toad (*Alytes cistermansii*), but considered these to be within the range of typical intraspecific variation in amphibians.

Carretero et al. (2009) disagreed with Zangari et al.’s (2006) decision to treat the Eastern Iberian Painted Frog as a subspecies, *Discoglossus galganoi jeanneae*. They found additional support for the species rank of these two taxa in Velo-Antón et al. (2008) and stated that, given the lack of more detailed studies allowing assessment of gene flow between both taxa in secondary contact areas, there is no reason to treat them as conspecific. This is in conflict with our fundamental appraisal that splitting a species can only be valid if the split is substantiated by scientific evidence, rather than considering taxa as species because of lack of reason to treat them as conspecific. As long as this is not the case, we promote conspecificity to be the rule. In fact, Velo-Antón et al.’s (2008) results are in agreement with Zangari et al.’s (2006) work. The fact that both studies found the same low level of nuclear differentiation with independent markers certainly calls for a reassessment of the validity of the specific status of *jeanneae* and reinforces our reluctance to treat it as a valid species.

The comprehensive work of Frost et al. (2006) on amphibian systematics has provoked contrasting responses, including (among quite some others) a rather strong critique by Wiens (2007), which saw a subsequent rebuttal by Frost et al. (2008). Indirectly, Pauly et al. (2009) also criticised Frost et al. (2006), and also received a response (Frost et al. 2009). Overall, Speybroeck and Crochet’s (2007) treatment of the proposed changes seems to have been largely in correspondence to what other authors have concluded. An exception deserves, however, our renewed attention. While Speybroeck and Crochet (2007) proposed to attribute the European ‘true toad’ species to 2 genera (*Bufo and Epidalea*), general consent in this case seems to be towards conserving *Bufo* as the genus for all, at least for the time being (Vences 2007; Bour et al. 2008; Lescure 2008). These authors argue that cases of natural hybridisation (e.g. a very recent record of hybridisation *Bufo bufo x viridis* by Duda 2008) should encourage rejection of a genus level split, as proposed by Dubois (1988) and applied to the case of *Bufo* for the first time by Dubois and Dinesh (2007). Concerning European species, Van Bocxlaer et al. (2009) provide some support for the generic arrangement proposed by Frost et al. (2006), which might very well make attribution of Green Toad (*Bufo viridis* s.l.- see below)) to the genus *Pseudepidalea* and the Natterjack (*Bufo calamita*) to *Epidalea* a valid arrangement. Yet, with different relationships turning up from different studies (cf. also Pramuk et al. 2008) and many taxa still in need of investigation, it seems cautious not to draw any taxonomical conclusions just yet. Pending additional research, we therefore place all European species back in the single genus *Bufo*. Additionally, we note that according to Dubois and Bour (in press), the use of the name *Pseudepidalea* should be abandoned for that of the junior synonym *Bufo* Rafinesque, 1815, while the name *Epidalea* Cope, 1864 remains available.
We have previously been reluctant to accept Stöck et al.’s (2006) *Bufo viridis* (Green Toad) splits (Speybroeck and Crochet 2007). Stöck et al. (2008a) described yet another new species from Sicily, *Bufo siculus* (Sicilian Green Toad). Despite Carretero et al.’s (2009) adoption of these new species, we still believe that mtDNA lineages alone cannot be used to substantiate new species, and that the level of divergence of the taxa, which are also supported by other characters (e.g. *siculus* which is also supported by nuclear and morphological data, albeit without comparing the taxon morphologically with its closest African relatives), is not high enough to be in itself evidence of specific status. To a certain degree at least, this seems to be corroborated by Van Bocxlaer et al. (2009): divergence between the Green Toad splits *viridis* and ‘cf. variabilis’ appears to be smaller than between the Common Toad (sub)species *bufo* and *spinosus*. We also treat the latter two taxa as conspecific. While we do not claim that the green toads of the Western Palearctic definitely belong to a single species, we maintain that the available information cannot (yet) support any species level split.

As noted by Razzetti (2008), the correct name for the green toads of peninsular Italy, Corsica, Sardinia and northeastern Sicily is still controversial. Balletto et al. (2007), based on specimens from Venice, used *Bufo lineatus* Ninni, 1879 (type locality: surroundings of Venice - Frost, 2009) as the valid nomen for the clade of peninsular Italy, while Stöck et al. (2006, 2008a) considered *Bufo lineatus* as a junior synonym of *Bufo viridis*, because they found specimens from Padua and Trieste that belong to the nominotypical lineage.

Stöck et al. (2008b) studied the phylogeography of the genus *Hyla* (tree frogs) around the Mediterranean. They identified three deeply divergent mitochondrial lineages in populations currently classified as *Hyla arborea*, each of them being supported by variation in one nuclear intron. In their mitochondrial tree (but not in their nuclear tree), treating *H. sarda* and *H. intermedia* as valid species could render *H. arborea* paraphyletic, because the three mitochondrial lineages identified within *arborea* are not necessarily each other's closest relatives. Since the specific status of *intermedia* is well supported by reproductive isolation in contact zones (Verardi et al. 2009), and since *sarda* displays distinct and well-known morphological and acoustic characters (Schneider 1974; Lanza 1983; Rosso et al. 2001, 2004; Castellano et al. 2002), we maintain them as valid species. As a consequence, the mitochondrial data provide strong evidence for recognising the Iberian taxon *molleri* and the eastern taxon *orientalis* (currently only known in Europe from the Black Sea Coast of Romania and European Turkey) as valid species as well. Nevertheless, the distributional limits of these two taxa remain unknown. There is no evidence of reproductive isolation in the continuous range of tree frogs in the Balkans, no known obvious morphological characters to separate them, and no obvious acoustic difference between *molleri* and *arborea*, nor *orientalis* and *arborea* (Schneider 1974, 2002). Accepting these two new European species would thus rest entirely on mtDNA data from a very small number of specimens (seven *orientalis* and only two *molleri*). Therefore, while a species level split is likely to be required, we prefer to wait for additional data, as specified, before recognising *molleri* and/or *orientalis* as valid species.

Detailed study by Gvoždík et al. (2008) uncovered a complex pattern of geographical variation in morphology among populations of *Hyla arborea* and *Hyla savignyi*. The similarity among populations is not necessarily greater within species that between species. On the contrary, populations of different species inhabiting neighbouring regions are often more similar than populations of the same species inhabiting distant regions. Groups of populations defined by morphology do not correspond to the mitochondrial lineages defined by Stöck et al. (2008) either. In fact, Gvoždík et al. (2008) suggest that morphological variation of *Hyla* is more linked to climate variation than to evolutionary history.

Stöck et al.’s (2008b) unnamed clade of *Hyla cf. intermedia* from Switzerland corresponds with the northern clade of Canestrelli et al. (2007a). Allozyme divergence between this northern clade and the south-central clade of *H. intermedia* s.l. is typical of intraspecific level of divergence: Nei’s distance value of 0.07 according to Canestrelli et al. (2007b), to be compared with Nei’s distance of 0.55 between *arborea* and *intermedia* (Verardi et al. 2009). Thus, in our opinion, the various clades within *Hyla intermedia* s.l. might well prove to constitute valid subspecies, but are unlikely to represent distinct species. In any case, we strongly advocate detailed analyses of contact zones prior to any formal proposal.

A detailed phylogeographic analysis of the Pool Frog in Italy (Canestrelli and Nascetti 2008) supported
the subspecific status of *Pelophylax lessonae bergeri* suggested by Crochet and Dubois (2004) and followed by Speybroeck and Crochet (2007). The same study confirmed that Sicilian pool frogs should also be recognised as a distinct subspecies (see also Santucci *et al.* 1996).

Lymberakis *et al.* (2007) investigated Eastern Mediterranean water frog phylogeny by means of mitochondrial DNA. Their results reinforce the idea that *Pelophylax kurtmuelleri* (Greek Marsh Frog) should be treated as conspecific with central European populations of the *P. ridibundus* complex (Marsh Frog), as previously established with allozyme data (Beerli 1994). The precise status of these populations should be investigated in a range-wide analysis of the *P. ridibundus* complex. As long as mating call differences are the only support for specific treatment (Schneider *et al.* 1993), we suggest to no longer recognise *kurtmuelleri* as a valid species.

Alleged contact zones between *ridibundus* and *kurtmuelleri* in Thrace (Schneider *et al.* 1993) seem to be in fact contact zones with *Pelophylax bedriagae* (Bedriaga’s Water Frog) rather than *ridibundus*, as Beerli (1994) identified Thracian water frogs unambiguously as *Pelophylax bedriagae*. This seems to have been confirmed by Lymberakis *et al.*’s (2007) results, which included a sample from Thrace (Dadia) attributed to *P. bedriagae* and closely related to Lesbos and Chios populations. However, their results also attributed a sample from a very nearby location, as well as other Thracian samples, to *Pelophylax ridibundus*. All these results suggest that *bedriagae* and “European *ridibundus*” form a contact zone in Thrace, where these two taxa are reproductively isolated (Schneider *et al.* 1993). This indicates that the two subclades B5 and B6 of Lymberakis *et al.* (2007) are valid biological species and thus supports the widely accepted species status of *P. bedriagae* and *P. ridibundus* (sensu lato). However, Lymberakis *et al.* (2007) did not include samples from the type locality of *ridibundus* (northern Caspian Sea area), so it remains to be determined if European populations of Marsh Frogs are conspecific with sensu stricto *P. ridibundus* or not. If not, the names *Pelophylax ranaeformis* (Laurenti, 1768) and *Pelophylax forti* (Boulenger, 1884) might apply to the European Marsh Frog (Dubois & Ohler 1995a,b). The former name relates (at least) to the populations of the Greek island Limnos (Dubois & Ohler 1995b).

Lymberakis *et al.* (2007) found *Pelophylax cerigensis* (Karpathos Water Frog) to be nested within their subclade B5, corresponding to *P. bedriagae*. We note that these authors also attributed Rhodes populations to *P. cerigensis*, whereas the original description only considered this to be a possibility (Beerli *et al.* 1994). Indeed, based on biochemical data, Plötner (2005) placed Rhodes and Karpathos water frogs together, different from both *bedriagae* and *ridibundus*, and attributed populations from “Karpathos and probably Rhodes” to *cerigensis*. However, to our knowledge, no subsequent papers have provided definite evidence ascertaining the specific status of Rhodes water frogs. The results of Lymberakis *et al.* (2007) invalidate a *P. cerigensis* limited to Karpathos and Rhodes. Apart from the authors’ suggestion that *P. cerigensis* could be treated as a junior synonym for *P. bedriagae*, alternative arrangements seem compatible with the available evidence: to restrict the name *P. bedriagae* to (at least some of) the more eastern populations (Syria and some surrounding areas, also Cyprus), whereas populations from Turkey, the eastern Aegean islands, including Karpathos and Rhodes could be attributed to *P. caralitanus* (Arkan 1988), for which *cerigensis* (Beerli, Hotz, Tunner, Heppich and Uzzell 1994) would be a junior synonym. A second alternative could include splitting of the latter group, with the Karpathos populations being attributed to *P. cerigensis* and treating the Turkish, eastern Aegean and Rhodes populations as a different species. Under either of these alternative hypotheses, several other species would need to be recognised for Anatolian and Middle Eastern water frog populations. Our second alternative might result in retaining the validity of *P. cerigensis* (for Karpathos populations only).

However, for the time being, we believe material from geographically intermediate populations is required to warrant these alternative arrangements, and therefore preliminarily consider *P. cerigensis* to represent a part of *P. bedriagae* rather than a separate species. The most recent available results about the contact zones between the western and central Anatolian lineages of water frogs (Akin *et al.* 2010) support the view that at least part of the genetic diversity within the *bedriagae* complex represents intraspecific variation. We thus suggest to recognise, for the time being, a single species of Middle East water frog, whose name should be either *bedriagae* or *ranaeformis*, depending on the identity of the water frogs of Limnos. The nomen *cerigensis* thus currently becomes a synonym of *bedriagae* at the species rank.
Testudines or Chelonii

Different opinions exist on whether Testudines (e.g. Fritz and Havas 2007; Rhodin et al. 2008) or Chelonii (e.g. Bour and Dubois 1985) should be used to refer to the order of turtles, tortoises and terrapins. Spinks and Shaffer (2009) performed a phylogenetic study of the genus Emys based on multiple genes, both mtDNA and nuclear. There is generally no reciprocal monophyly between Emys orbicularis (European Pond Terrapin) and E. trinacris (Sicilian Pond Terrapin) in their trees based on nuclear genes, providing additional substantiation for rejection of the latter taxon at species level (Speybroeck and Crochet 2007).

Fritz et al. (2009) investigated the mitochondrial phylogeography of the Spur-thighed Tortoise (Testudo graeca) from the western parts of the Mediterranean, and recognised T. g. nabeulensis as a valid subspecies for the Tunisian populations, with Sardinian and Sicilian animals belonging to this taxon. In this arrangement, Majorcan and Spanish populations remain treated as T. g. graeca.

Sauria

Gamble et al. (2008a) investigated Gekkota taxonomy, attributing the genus Tarentola to a new trans-atlantic family Phyllodactylidae. In this view, Euleptes is placed within the Sphaerodactylidae (Gamble et al. 2008b), and Hemidactylus and Mediodactylus remain within the Gekkonidae (Bauer et al. 2008; Gamble et al. 2008a). Perera and Harris (2008) found three clades of the Moorish Gecko (Tarentola mauritanica) in Iberia: one that is widespread throughout Europe and found in eastern and southern Spain, one from central parts of the Iberian Peninsula, and one closely related to populations of northern and central Morocco, restricted to a few southern Iberian localities. This study, together with Harris et al. (2009) and other previous results (Harris et al. 2004), confirms that populations currently classified as T. mauritanica constitute a species complex, with several valid species scattered within a paraphyletic T. mauritanica. A taxonomical revision, which might add a new Tarentola species to the European fauna, T. (m.) fascicularis, remains highly desirable. Červenka et al. (2008) advocated the use of the genus name Mediodactylus for Kotschy’s Gecko (M. kotschyi): Mediodactylus appears to be a well supported, monophyletic clade and its inclusion in Cyrtopodion would clearly threaten the monophyly of the latter. We follow this here and recognise Mediodactylus at genus rank.

Overlooked by Speybroeck and Crochet (2007), the genetic substructuring of Mediodactylus kotschyi shows a high degree of divergence, indicating that the numerous taxa described in this “species” probably constitute in fact a species complex (Kasapidis et al. 2005). For instance, the most basal lineage in this complex (the Cretan clade) is estimated to have diverged 10 mya, which is considerably longer than with typical within-species divergences. Additional range-wide sampling at a finer scale (especially in southwestern Turkey) and results from additional data sets (morphological and nuclear data) are clearly warranted.

Investigating the relationships within the subfamily Lacertinae, Pavlicev and Mayer (2009) used combined nuclear and mtDNA data sequences to reveal whether the bush-like phylogenetic trees found by previous authors were due to methodological artefacts, rather than the reflection of rapid diversification. The latter seems to be the case. A surprising result is the strongly supported placement of Dinarolacerta within the Algyroides clade, even while the authors cautiously note the evidence to be still insufficient to conclude that Algyroides is paraphyletic.

While Iberian populations of the Fringe-toed Lizard (Acanthodactylus erythrurus) do not -based on mtDNA data- form a monophyletic group, suggesting multiple independent colonisation events from northern Africa, the monophyly of the nominal subspecies has not been rejected (Fonseca et al. 2009).

Paulo et al. (2008) confirmed the basal position of Timon lepidus nevadensis in relation to other Ocellated Lizard (Timon lepidus) populations, without discussing the possible species rank of the former. Again, analyses of morphological and/or genetic variation in contact zones are highly desirable.

Salvi et al. (2009a) investigated allozyme differentiation of Bedriaga’s Rock Lizard (Archaeolacerta bedriagae), showing lower differentiation than in Guillaume and Lanza (1982). As acknowledged by
Guillaume (1987), however, the latter results were miscalculated. Arnold et al. (2007) pointed out that mtDNA variation suggested the existence of more than one Tyrhenian rock lizard species. In contrast, Salvi et al. (2009a, b) convincingly advocate that their allozyme data support the recognition of a single Archaeolacerta species, as the intraspecific divergence of A. bedriagae is well within the limits of divergence known from other lacertid lizards. On the other hand, their data suggest that the current intraspecific taxonomy is in need of revision through synonymisation of several Sardinian subspecies. Based on the available allozyme data, South Sardinian populations from the Sette Fratelli Mountains, seemed to represent an undescribed subspecies (Guillaume 1987; Salvi et al. 2009a), but this is contradicted by the mitochondrial data of Salvi et al. (in press). The latter established a clearly divergent lineage from northern Corsica, while populations from the remainder of the species’ range seemed to group together (albeit displaying clear within-lineage differentiation). Taxonomic implications were not (yet) put forward.

Arribas (2009) described the oviparous Cantabrian and Pyrenean populations of the Viviparous Lizard as a distinct subspecies, Zootoca vivipara louislanztzi.

Geniez et al. (2007) redefined the nominotypical Iberian Wall Lizard (Podarcis hispanicus s.s.). Renoult et al. (2009) provided new information on the distribution of P. liolepis (= morphotype 3). Formal description of remaining morphotypes 1 and 2, as well as investigation of further clades, remain to be published (cf. e.g. Pinho et al. 2008). A review of the status of the research on Iberian Podarcis was provided by Carretero (2008).

Lymerakis et al. (2008) investigated the phylogeny of the superspecies Podarcis erhardii (Erhard’s Wall Lizard). With Podarcis peloponnesiacus (Peloponnesse Wall Lizard) clearly nested inside the traditional “P. erhardii” clades, two options were available: (1) synonymise peloponnesiacus with erhardii or (2) split erhardii. In view of, among others, the genetic divergence, we support the authors’ choice for the latter option. Thus, two new lizard species deserve acceptance: the Cretan Wall Lizard, Podarcis cretensis, from western Crete and islets surrounding Crete, and the large-bodied Pori Wall Lizard, Podarcis levendis, from two islets off Antikythira (Pori and Lagouvardos). Further splitting of erhardii into (at least) a mainland and a Cycladic species seems desirable, but requires further study.

Montori et al. (2009) stated that the origin of the Menorcan populations of Scelarcis perspicillata (Moroccan Rock Lizard), while presumed to be Algeria, remains unclear, despite Perera et al.’s (2007) results, which suggested a close relationship with Taza (Morocco) populations from the subspecies chabanaudi. The latter might represent a full species, thus possibly necessitating a name change for the European populations.

Carranza et al. (2008) revealed a surprisingly high level of mtDNA diversity within the Ocellated Skink (Chalcides ocellatus), suggesting it might constitute a species complex. Indeed, one of the clades in this complex has already been put forward as a separate species (Baha el Din 2006 - C. humilis). However, morphological variation in the Ocellated Skink is still poorly understood and the currently identified morphological subspecies do not agree with the mtDNA clades. For example, the Tunisian clade does not include all populations traditionally attributed to the subspecies Chalcides ocellatus tiligugu. In Europe, this clade has been identified on Sardinia, and could also be present on Sicily and Malta, even though Carranza et al. (2008) did not include specimens form the two latter islands. Kornilios et al. (2010) investigated the phylogeography of the species with mtDNA, confirming its complex past history and high level of current genetic diversity but without providing new data on systematics. We refrain from proposing any systematic changes until additional sources of evidence have been gathered.

The distinctness of the Italian Three-toed Skink subspecies Chalcides chalcides vittatus from Tunisia, which is also present on Sardinia, as found by Giovanotti et al. (2007), was confirmed by Carranza et al. (2008).

The presence of both C. c. vittatus and C. o. tiligugu on Sardinia seems to be due to human introduction from northern Tunisia (Carranza et al. 2008), while Sicilian haplotypes of C. chalcides are distinct from Tunisian haplotypes, suggesting a long-term separation (Giovanotti et al. 2007).

Gvoždík et al. (2010) investigated the genetic structure of the Slow Worm (Anguis fragilis) and treated two taxa as species new to the European herpetofauna: A. colchica and A. graecca. For the former, three subspecies are proposed, with A. c. incerta being present in the area discussed in our paper. While the range of
their *Anguis fragilis* s.s. is clearly undersampled (especially Italy and the Iberian Peninsula) and the mitochondrial and nuclear phylogenies are not entirely congruent, the available molecular and morphological data seem to warrant the proposed split. More range-wide sampling and additional morphological study remain desirable.

Amphisbaenia

Overlooked by Speybroeck and Crochet (2007), worm lizards of the genus *Blanus* gave their name to a new family, Blaniidae. This change results from research results including a fascinating transatlantic rafting hypothesis (Kearney 2003; Kearney and Stuart 2004; Vidal *et al.* 2008a), and has also been adopted by the online TIGR Reptile Database (Uetz and Hallermann 2009).

Recent studies investigating the phylogeography and morphology of the Iberian Worm Lizard (*B. cinereus*) (Vasconcelos “Vaconcelos” *et al.* 2006; Albert *et al.* 2007; Albert and Fernández 2009) established two clearly divergent clades occurring on the Iberian Peninsula. Albert and Fernández (2009) described the clade from the southwestern parts of the Iberian Peninsula as a new species, *B. mariae* (Maria’s Worm Lizard). We tentatively accept this new species, because of its highly divergent mtDNA (divergence similar to that between the North African *B. mettetali* and *B. tingitanus*) and allegedly concordant patterns of nuclear DNA variation. Nevertheless, we note that detailed nuclear data are not available in Albert *et al.* (2007), nor Albert and Fernández (2009), making it impossible to really evaluate the degree of concordance between nuclear and mtDNA data. Morphological results in Albert and Fernández (2009) indicate average differences between specimens of both clades, but do not allow to determine whether morphological differences are retained near contact zones or not. Thus, in this instance, we repeat our plea for detailed analysis of contact zones. Finally, we wish to point out some regrettable mistakes in the nomenclatural part of Albert and Fernández (2009). For instance, their lectotype designation is invalid, due to the lack of explicitly stated taxonomic purpose (see Art. 74.7.3 of the Code), they have not properly established whether the original type series consists of one holotype or several syntypes, and they have not examined the status of other, older nomina in the synonymy of Iberian *B. mariae* (see Gans 2005).

Serpentes

A number of studies indicated the paraphyly of the family Colubridae, as traditionally understood, in relation to the Elapidae and the Atractaspidae (Vidal and Hedges 2002; Nagy *et al.* 2003). As adopted by Kelly *et al.* (2008, 2009), this resulted into relocating *Malpolon* (Montpellier snakes) to the family Psammophiidae. In addition, the clade containing the water snakes (*Natrix*) is now generally treated as the family Natricidae (see also Vidal *et al.* 2007, Zaher *et al.* 2009). While Carretero *et al.* (2009) treated this as premature, we do accept these changes, as they are well-supported by several independent studies.

The sand boas also have been shown to be quite distinct from true boas (Noonan and Chippindale 2006), and have been placed in the family Erycidae (Vidal and Hedges 2002).

Nuclear and mitochondrial DNA data was analysed for specimens throughout the distribution range of the Western Whip Snake (*Hierophis viridiflavus*) by Rato *et al.* (2009), providing a wider geographical coverage than Nagy *et al.* (2002). Geographical distribution of colour patterns observed within the species did not entirely coincide with two established mtDNA lineages. Levels of divergence were interpreted as being intraspecific for colubrid snakes. Both lineages were found in northwestern Italy (albeit not syntopically), where the ‘typical’ colour pattern was almost exclusively found. It seems appropriate to refer to populations of the eastern clade as subspecies *carbonarius*, noting that colour pattern cannot be fully relied upon for distinction between this and the nominal form.

Santos *et al.*’s (2008) mtDNA data confirmed the distinctness of the Smooth Snake subspecies *Coronella austriaca acutirostris*, but not that of *C. a. fitzingeri*.

TERMS OF USE
This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.
Guicking et al. (2008) advocated the division of Natrix maura (Viperine Snake) into 3 or 4 phylogenetic taxa (including a Tunisian clade present on Sardinia), but refrained from choosing whether subspecies or species rank might be the most appropriate choice, pending more data e.g. from southern Spain. They did not (yet) deal with the related nomenclatural issues. As noted by Speybroeck and Crochet (2007), Guicking et al. (2006) considered lineages of this species and Natrix tessellata to fall within the boundaries of intraspecific divergence. Concerning the latter species, a subsequent paper additionally highlighted its high intraspecific variation (Guicking et al. 2009). Three major clades were identified for Europe: Greece, Crete and the remainder of Europe, with the former being the most basal of the three and the two latter being positioned as sister clades in the tessellata phylogeny. The authors refrained from any decision on splitting this species into different taxonomical units, pending further genetic and phenotypic data.

Zinenko et al. (2010) reported on morphological variation of vipers of the Vipera berus (Adder) complex in Eastern Romania, the Republic of Moldova and West and Central Ukraine, using multivariate analyses. They identified populations with typical nikolskii morphology, colourless venom and habitat divergence in respect to V. b. berus in the northeastern Romanian forest-steppe zone, indicating that this taxon would occur in the area considered in our paper. Intermediate morphology of the vipers in the eastern Romanian lowlands suggested morphological introgression in the contact zone between V. b. berus and V. b. nikolskii, while the presence of V. b. berus mtDNA cytochrome b haplotypes in the western range of V. b. nikolskii demonstrated considerable mitochondrial introgression (Kalyabina-Hauf et al. 2004; Joger et al. 2007). Thus, available data clearly do not support a full species status for this taxon. Additional range wide sampling of V. b. nikolskii is necessary to establish whether genetically “pure” populations occur within the geographical extent of our paper.

The validity of the Asp Viper subspecies Vipera aspis atra was recently questioned: neither morphological data (Golay et al. 2008) nor molecular evidence (Ursenbacher et al. 2006) supported its distinctiveness. However, neither of these studies investigated colour pattern, and Golay et al. (2008) included in “atra” many populations which do not show the atra colour pattern. While atra probably does not constitute a distinctive evolutionary unit in the aspis complex (in contrast to e.g. Zuffi 2002), we think it could still constitute a valid morphological subspecies.

Barbanera et al. (2009) investigated the variation in phenotype, mtDNA and nuclear DNA (microsatellites) in Vipera aspis in Italy. They showed that microsatellites, mtDNA and phenotype indicate concordant groups of populations. More precisely, mtDNA and phenotype agreed on the range limit between aspis and francisciredi, with microsatellites providing a somewhat ambiguous signal (no distinct cluster with Bayesian clustering, but very limited gene flow), probably as a result of the low number of aspis specimens. The boundary between francisciredi and hugyi was concordant for the three markers, and gene flow seemed to be similarly low, even if several specimens from the center of the Italian Peninsula showed signs of nuclear introgression. In addition, mtDNA data exhibited traces of an ancient introgression event (ancient mitochondrial capture of francisciredi haplotypes by northern populations of hugyi). In conclusion, aspis, francisciredi and hugyi are three well-supported evolutionary units in the Asp Viper complex, genetic data show signs of ancient introgression between francisciredi and hugyi, but the nature of their interaction in contact zones remains to be studied, to establish if gene flow is currently restricted or not.

Morphological as well as molecular data confirmed that the Nose-horned Viper subspecies Vipera ammodytes ruffoi and V. a. gregorwallneri are to be placed in synonymy with the nominal subspecies (Tomović 2006; Ursenbacher et al. 2008).

Species list

Changes in comparison with the list by Speybroeck and Crochet (2007) have been underlined.

We note that, subsequent to the rediscovery of the works of Garsault (1764), a number of names has to be attributed to this author, instead of to Laurenti, 1768 (Dubois and Bour in press). In the case of the genus names Bufo, Salamandra and Vipera, this involves adding brackets to the authorship of species names described after 1764.
Two water frog taxa have “kl.” inserted into their name, in between the genus and the species name. These are not truly biological species, but hemiclones, with “kl.” referring to the Greek word “klepton”, meaning thief. For more background reading in this issue see e.g. Dubois and Günther (1982).

During the reviewing process, it became clear that a lot of controversy exists regarding authorship and year of description for many taxa. For some cases that we were unable to solve, we therefore provide both alternative options, as a reminder to the reader of these problems in the nomenclature of European reptiles and amphibians. The authorship and year for reptile family names as presented here should be regarded as preliminary, while those of the amphibians have been thoroughly investigated (Dubois 1984, 1985).

Class Amphibia (amphibians)

Order Caudata or Urodela (salamanders and newts)
Family Salamandridae Goldfuss, 1820 (true salamanders and newts)
 Calotriton Gray, 1858
 arnoldi Carranza and Amat, 2005 — Montseny Brook Newt
 asper (Dugès, 1852) — Pyrenean Brook Newt
 Chioglossa Bocage, 1864
 lusitanica Bocage, 1864 — Golden-striped Salamander
 Euproctus Gené, 1839
 montanus (Savi, 1838) — Corsican Brook Newt
 platycephalus (Gravenhorst, 1829) — Sardinian Brook Newt
 Ichthyosaura Sonnini and Latreille, 1801
 alpestris (Laurenti, 1768) — Alpine Newt
 Lissotriton Bell, 1839
 boscai (Lataste in Blanchard, 1879) — Bosca’s Newt
 helveticus (Razoumowsky, 1789) — Palmate Newt
 italicus (Peracca, 1898) — Italian Newt
 montandoni (Boulenger, 1880) — Montandon’s Newt
 vulgaris (Linnaeus, 1758) — Smooth Newt
 Lyciasalamandra Veith and Steinfartz, 2004
 helverseni (Pieper, 1963) — Karpathos Salamander
 Pleurodeles Michahelles, 1830
 waltl Michahelles, 1830 — Sharp—ribbed Newt
 Salamandra Garsault, 1764
 atra (Laurenti, 1768) — Alpine Salamander
 corsica (Savi, 1838) — Corsican Fire Salamander
 lanzai (Nascetti, Andreone, Capula and Bullini, 1988) — Lanza’s (Alpine) Salamander
 salamandra (Linnaeus, 1758) — Fire Salamander
 Salamandrina Fitzinger, 1826
 perspicillata (Savi, 1821) — Northern Spectacled Salamander
 terdigitata (Bonnaterre, 1789) — Southern Spectacled Salamander
 Triturus Rafinesque, 1815
 arntzeni Litvinchuk, Borkin, Dzukić and Kalezić, 1999 — Arntzen’s Crested Newt
 carnifex (Laurenti, 1768) — Italian Crested Newt
 cristatus (Laurenti, 1768) — (Great or Northern) Crested Newt
 dobrogicus (Kirizescu, 1903) — Danube Crested Newt
 ? *karelinii* (Strauch, 1870) — Southern Crested Newt — presence in Europe depends on location of boundary with *arntzeni*
 macedonicus (Karaman, 1922) — Macedonian Crested Newt
marmoratus (Latreille, 1800) — Marbled Newt
pygmaeus (Wolterstorff, 1905) — Southern Marbled Newt

Family Plethodontidae Gray, 1850 (lungless salamanders)

Speleomantes Dubois, 1984
ambrosii (Lanza, 1955) — Ambrosi’s Cave Salamander
flavus (Stefani, 1969) — Monte Albo Cave Salamander
genii (Temminck and Schlegel, 1838) — Gené’s Cave Salamander
imperialis (Stefani, 1969) — Scented Cave Salamander
italicus (Dunn, 1923) — Italian Cave Salamander
sarrabusensis Lanza, Leo, Forti, Cimmaruta, Caputo and Nascetti 2001 — Sette Fratelli Cave Salamander
strinatti (Aellen, 1958) — Strinati’s Cave Salamander

Family Proteidae Gray, 1825 (olms)
Proteus Laurenti, 1768
anguinus Laurenti, 1768 — Olm

Order Anura (frogs and toads)
Family Alytidae Fitzinger, 1843 (painted frogs and midwife toads)
Alytes Wagler, 1829
cisternasi Boscá, 1879 — Iberian Midwife Toad
dickhillei Arntzen and Garca-Paris, 1995 — Southern Midwife Toad
muletensis (Sanchíz and Adrover, 1977) — Majorca Midwife Toad
obstetricans (Laurenti, 1768) — Common Midwife Toad

Discoglossus Otth, 1837
galganoi Capula, Nascetti, Lanza, Bullini and Crespo, 1985 — Iberian Painted Frog
montalentii Lanza, Nascetti, Capula and Bullini, 1984 — Corsican Painted Frog
pictus Otth, 1837 — Painted Frog
sardus Tschudi in: Otth, 1837 — Tyrrhenian Painted Frog

Family Pelobatidae Bonaparte, 1850 (spadefoot toads)
Pelobates Wagler, 1830
cultripes (Cuvier, 1829) — Western Spadefoot
fuscus (Laurenti, 1768) — Common Spadefoot
syriacus Boettger, 1889 — Eastern Spadefoot

Family Pelodytidae Bonaparte, 1850 (parsley frogs)
Pelodytes Bonaparte, 1838
ibericus Sánchez-Herráiz, Barbadillo, Machordom and Sanchiz, 2000 — Iberian Parsley Frog
punctatus (Daudin, 1802) — Parsley Frog

Family Bufonidae Gray, 1825 (true toads)
Bufo Laurenti, 1768
bufo (Linnaeus, 1758) — Common Toad
calamita (Laurenti, 1768) — Natterjack
viridis (Laurenti, 1768) — Green Toad

Family Hylidae Rafinesque, 1815 (tree frogs)
Hyla Laurenti, 1768
arborea (Linnaeus, 1758) — Common Tree Frog
intermedia Boulenger, 1882 — Italian Tree Frog
meridionalis Boettger, 1874 — Stripeless Tree Frog
sarda (de Betta, 1857) — Tyrrhenian Tree Frog

Family Ranidae Rafinesque-Schmaltz, 1814 (true frogs)

Pelophylax Fitzinger, 1843
bedriagae (Camerano, 1882) — Bedriaga’s Water Frog
cretensis (Beeri, Hotz, Tunner, Heppich and Uzzell, 1994) — Cretan Water Frog
epeiroticus (Schneider, Sofianidou and Kyriakopoulou-Sklavounou, 1984) — Epirus
Water Frog
kl. esculentus (Linnaeus, 1758) — Edible Frog
kl. grafi (Crochet, Dubois, Ohler and Tunner, 1995) — Graf’s Hybrid Frog
lessonae (Camerano, 1882) — Pool Frog
perezi (Seoane, 1885) — Iberian Water Frog
ridibundus (Pallas, 1771) — Marsh Frog
shqipericus (Hotz, Uzzell, Günther, Tunner and Heppich, 1987) — Albanian Pool Frog

Rana Linnaeus, 1758
arvalis Nilsson, 1842 — Moor Frog
dalmatina Fitzinger in Bonaparte, 1838 — Agile Frog
graeca Boulenger, 1891 — Greek Stream Frog
derica Boulenger, 1879 — Iberian Stream Frog
italica Dubois, 1987 — Italian Stream Frog
latastei Boulenger, 1879 — Italian Agile Frog
pyrenaica Serra—Cobo, 1993 — Pyrenean Stream Frog
temporaria Linnaeus, 1758 — Grass Frog

Class Reptilia (reptiles)
Order Testudines or Chelonia (turtles, tortoises and terrapins)

Family Cheloniidae Oppel, 1811 (sea turtles)
Caretta Rafinesque-Schmaltz, 1814
caretta (Linnaeus, 1758) — Loggerhead ((Sea) Turtle)

Family Dermochelyidae Fitzinger, 1843 (1825) (leatherbacks)
Dermochelys de Blainville, 1816
coriacea (Vandelli, 1761) — Leatherback

Family Testudinidae Batsch, 1788 (tortoises)
Testudo Linnaeus, 1758
graeca Linnaeus, 1758 — Spur-thighed Tortoise
hermanni Gmelin, 1789 — Hermann’s Tortoise
marginata Schoepff, 1792 — Margined Tortoise

Family Geoemydidae Theobald, 1868 (Old World terrapins)
Mauremys Gray, 1869
leprosa (Schweigger, 1812) — Spanish Terrapin
rivulata (Valenciennes, 1833) — Balkan Terrapin

Family Emydidae Rafinesque, 1815 (New World terrapins)
Emys Duméril, 1805
orbicularis (Linnaeus, 1758) — European Pond Terrapin

Order Squamata

Suborder Sauria (lizards)
Family Agamidae Spix, 1825 or Fitzinger, 1826 (agamas)
Laudakia Gray, 1845
stellio (Linnaeus, 1758) — Starred Agama
Family Chamaeleonidae Gray, 1825 or Rafinesque, 1815 (Chamaeleontidae) (chameleons)

Chamaeleo Laurenti, 1768

- *africanus* Laurenti, 1768 — African Chameleon
- *chamaeleon* (Linnaeus, 1758) — Mediterranean Chameleon

Family Sphaerodactylidae Underwood, 1954 (least geckos)

Euleptes Fitzinger, 1843

- *europaea* (Gené, 1839) — European Leaf-toed Gecko

Family Gekkonidae Oppel, 1811 or Gray, 1825 (true geckos)

Mediodactylus Szczepankiewicz and Golubev, 1977

- *kotschyi* (Steindachner, 1870) — Kotschy’s Gecko

Family Phyllodactylidae Gamble, Bauer, Greenbaum and Jackman, 2008 (leaf-toed geckos)

Tarentola Gray, 1825

- *mauritanica* (Linnaeus, 1758) — Moorish Gecko

Family Lacertidae Batsch, 1788 (true lizards)

Phrynocephalus Waller, 1846

- *arguta* (Pallas, 1773) — Steppe Runner

Hellenolacerta Arnold, Arribas and Carranza, 2007

- *argita* (Pallas, 1773) — Steppe Runner

Iberolacerta Arribas, 1997

- *aranica* (Arribas, 1993) — Aran Rock Lizard

Lacerta Linnaeus, 1758

- *agilis* Linnaeus, 1758 — Sand Lizard
- *bilineata* Daudin, 1802 — Western Green Lizard
- *schreiberi* Bedriaga, 1878 — Schreiber’s Green Lizard
- *trilineata* Bedriaga, 1886 — Balkan Green Lizard
A SPECIES LIST OF THE EUROPEAN HERPETOFANA

Family Scincidae Oppel, 1811 or Gray, 1825 (skinks)

Ablepharus Fitzinger in Eversmann, 1823
kitibelii Bibron and Bory de Saint-Vincent, 1833 — Snake-eyed Skink

Chalcides Laurenti, 1768
bedriagai (Boscá, 1880) — Bedriaga’s Skink
chalcides (Linnaeus, 1758) — Italian Three-toed Skink
ocellatus (Forskål, 1775) — Ocellated Skink
striatus (Cuvier, 1829) — Iberian Three-toed Skink

Ophiomorus Duméril and Bibron, 1839
punctatissimus (Bibron and Bory de Saint-Vincent, 1833) — Limbless Skink

Timon Tschudi, 1836
lepidus (Daudin, 1802) — Ocellated Lizard

Zootoca Wagler, 1830
vivipara (Jacquin, 1787) or (Lichtenstein, 1823) — Viviparous Lizard

Family Anguidae Gray, 1825 (slow worms)

Anguis Linnaeus, 1758
— Slow worm

viridis (Laurenti, 1768) — Eastern Green Lizard
Ophisops Méherties, 1832
elegans Méherties, 1832 — Snake-eyed Lacertid
Parvilacerta Arnold, Arribas and Carranza, 2007
parva (Boulenger, 1887) — Dwarf Lizard — single record from Turkish Thrace (Vench and Bologna 1996), actual presence within considered area requires confirmation

Podarcis Wagler, 1830
bocagei (Seoane, 1884) — Bocage’s Wall Lizard
carbonelli Pérez-Mellado, 1981 — Carbonell’s Wall Lizard
cretensis (Wettstein, 1952) — Cretan Wall Lizard
erhardii (Bedriaga, 1876) — Erhard’s Wall Lizard
filfolensis (Bedriaga, 1876) — Maltese Wall Lizard
gaigeae (Werner, 1930) — Skyros Wall Lizard
hispanicus (Steindachner, 1870) including s.s. morphotype, morphotype 1, and morphotype 2 — Iberian Wall Lizard
levidis Lymberakis, Poulakakis, Kaliontzopoulou, Valakos and Mylonas, 2008 — Pori Wall Lizard
lifordi (Günther, 1874) — Liford’s Wall Lizard
lilepis (Boulenger, 1905) — Catalonian Wall Lizard
melisellensis (Braun, 1877) — Dalmatian Wall Lizard
milenis (Bedriaga, 1882) — Milos Wall Lizard
muralis (Laurenti, 1768) — Common Wall Lizard
peloporosieacus (Bibron and Bory de Saint-Vincent, 1833) — Peloponnesian Wall Lizard
pityusensis (Boscá, 1883) — Ibiza Wall Lizard
raffonei (Mertens, 1952) — Aeolian Wall Lizard
siculus (Rafinesque-Schmaltz, 1810) — Italian Wall Lizard
tauricus (Pallas, 1814) — Balkan Wall Lizard
tilliguers (Gmelin, 1789) — Tyrrhenian Wall Lizard
vaucherii (Boulenger, 1905) — Vaucher’s Wall Lizard
waglerianus Gistel, 1868 — Sicilian Wall Lizard

Psammodromus Fitzinger, 1826
algirus (Linnaeus, 1758) — Large Psammodromus
hispanicus Fitzinger, 1826 — Spanish Psammodromus

Scelarcis Fitzinger, 1843
perspicillata (Duméril and Bibron, 1839) — Moroccan Rock Lizard

Scincus Fitzinger in Eversmann, 1823
lepidus (Daudin, 1802) — Ocellated Lizard

Zootoca Wagler, 1830
vivipara (Jacquin, 1787) or (Lichtenstein, 1823) — Viviparous Lizard

Family Scincidae Oppel, 1811 or Gray, 1825 (skinks)

Ablepharus Fitzinger in Eversmann, 1823
kitabelii Bibron and Bory de Saint-Vincent, 1833 — Snake-eyed Skink

Chalcides Laurenti, 1768
bedriagai (Boscá, 1880) — Bedriaga’s Skink
chalcides (Linnaeus, 1758) — Italian Three-toed Skink
ocellatus (Forskål, 1775) — Ocellated Skink
striatus (Cuvier, 1829) — Iberian Three-toed Skink

Ophiomorus Duméril and Bibron, 1839
punctatissimus (Bibron and Bory de Saint-Vincent, 1833) — Limbless Skink

Family Anguidae Gray, 1825 (slow worms)

Anguis Linnaeus, 1758
— Slow worm
cephallonica Werner, 1894 — Peloponnese Slow Worm
colechica (Nordmann, 1840) — Eastern Slow Worm
fragilis Linnaeus, 1758 — Slow Worm
graeca Bedriaga, 1881 — Greek Slow Worm

Pseudopus Merrem, 1820
apodus (Pallas, 1775) — Glass Lizard

Suborder Amphisbaenia (worm lizards)
Family Blanidae Kearney, 2003 (Mediterranean worm lizards)
Blanus Wagler, 1830
cinereus (Vandelli, 1797) — Iberian Worm Lizard
mariae Albert and Fernández (2009) — Maria’s Worm Lizard

Suborder Serpentes (snakes)
Family Typhlopidae Merrem, 1820 or Jan, 1863 (worm snakes)
Typhlops Schneider in Oppel, 1811
vermicularis Merrem, 1820 — Worm Snake

Family Erycidae Bonaparte, 1840 (sand boas)
Eryx Daudin, 1803
jaculus (Linnaeus, 1758) — Sand Boa

Family Psammophiidae Boie, 1827 (African sand snakes and Montpellier snakes)
Malpolon Fitzinger, 1826
insignitus (Geoffroy Saint-Hilaire, 1827) — Eastern Montpellier Snake
monspessulanus (Hermann, 1804) — Western Montpellier Snake

Family Natricidae Bonaparte, 1840 (Eurasian water snakes)
Natrix Laurenti, 1768
maura (Linnaeus, 1758) — Viperine Snake
matrix (Linnaeus, 1758) — Grass Snake
tessellata (Laurenti, 1768) — Dice Snake

Family Colubridae Oppel, 1811 (colubrids)
Coronella Laurenti, 1768
austriaca Laurenti, 1768 — Smooth Snake
girondica (Daudin, 1803) — Southern Smooth Snake

Dolichophis Gistel, 1868
caspius (Gmelin, 1789) — Caspian Whip Snake

Eirenis Jan, 1863
? modestus (Martin, 1838) — (Masked) Dwarf Snake — actual presence within the considered area requires confirmation

Elaphe Fitzinger, 1833
quatuorlineata (Bonnaterre, 1790) — (Western) Four-lined Snake
sauromates (Pallas, 1814) — Blotched Snake or Eastern Four-lined Snake

Hemorrhois Boie, 1826
algirus (Jan, 1863) — Algerian Whip Snake
hippocrepis (Linnaeus, 1758) — Horseshoe Whip Snake
? nummifer (Reuss, 1834) — Coin-marked Snake — actual presence within considered area requires confirmation

Hierophis Fitzinger in Bonaparte, 1834
gemonensis (Laurenti, 1768) — Balkan Whip Snake
viridiflavus (Lacépède, 1789) — Western Whip Snake

Macroprotodon Guichenot, 1850
brevis (Günther, 1862) — Western or Iberian False Smooth Snake
cucullatus (Geoffroy Saint-Hilaire, 1809) — Eastern or African False Smooth Snake
Platyceps Blyth, 1860

- *collaris* (Müller, 1878) — Reddish Whip Snake
- *najadum* (Eichwald, 1831) — Dahl’s Whip Snake

Rhinechis Michahelles in Wagler, 1833

- *scalaris* (Schinz, 1822) — Ladder Snake

Telescopus Wagler, 1830

- *fallax* (Fleischmann, 1831) — Cat Snake

Zamenis Wagler, 1830

- *lineatus* (Camerano, 1891) — Italian Aesculapian Snake
- *longissimus* (Laurenti, 1768) — Aesculapian Snake
- *situla* (Linnaeus, 1758) — Leopard Snake

Family Viperidae Oppel, 1811 (true vipers)

Macrovipera Reuss, 1927

- *schweizeri* (Werner, 1935) — Milos Viper

Montivipera Nilson, Tuniyev, Andréon, Orlov, Joger and Herrmann, 1999

- *xanthina* (Gray, 1849) — Ottoman Viper

Vipera Garsault, 1764

- *ammodytes* (Linnaeus, 1758) — Nose-horned Viper
- *aspis* (Linnaeus, 1758) — Asp Viper
- *berus* (Linnaeus, 1758) — Adder
- *latastei* (Boscá, 1878) — Lataste’s Viper
- *seoanei* (Lataste, 1879) — Seoane’s Viper
- *ursinii* (Bonaparte, 1835) — Meadow Viper

Some exogenous species which have become well-established during the last century

Class Amphibia (amphibians)
Order Anura (frogs and toads)

Family Pipidae Gray, 1825 (clawed toads and pipa toads)

Xenopus Wagler, 1827

- *laevis* (Daudin, 1802) — (African) Clawed Toad

Family Ranidae Rafinesque-Schmaltz, 1814 (true frogs)

Lithobates Fitzinger, 1843

- *catesbeianus* (Shaw, 1802) — (American) Bull Frog

Class Reptilia (reptiles)
Order Testudines or Chelonii (turtles, tortoises and terrapins)

Family Emydidae Rafinesque, 1815 (New World terrapins)

Trachemys Agassiz, 1857

- *scripta* *(Thunberg in Schoepff, 1792)* — Red-eared Slider or Terrapin (ssp. *elegans* Wied-Neuwied, 1838)

other exogenous terrapin species have frequently been recorded

Order Squamata
Suborder Sauria MacCartney, 1802 (lizards)

Family Lacertidae Oppel, 1811 (true lizards)

Teira Gray, 1838

- *dugesii* (Milne-Edwards, 1829) — Madeiran Wall Lizard — introduced to Lisbon harbour
Acknowledgements

Alain Dubois is thanked for his thorough and constructive review. Edoardo Razzetti and Josef Schmidtler are thanked for some valuable contributions. Miguel Vences, acting Zootaxa editor, is thanked for his enthusiastic support. Many herpetologists are thanked for providing papers and discussion.

References

Dubois, A. & Bour, R. (in press) The nomenclatural status of the nomina of amphibians and reptiles created by Garsault (1764), with a parsimonious solution to an old nomenclatural problem regarding the genus *Bufo* (Amphibia, Anura).
and comments on some nomina created by Laurenti (1768). Zootaxa.

Phylogenetics and Evolution.

Molecular Phylogenetics and Evolution, 51(2), 399–404.