There are five terrestrial biomes found in Palearctic realm of Iraq: Temperate broadleaf and mixed forests; Temperate grasslands, Savanas and shrublands; Flooded grasslands and Savannas; Mediterranean forests, woodlands and scrub; deserts and xeric shrublands. The presence of these ecozones resulted in a considerable heterogeneity of the herpetofauna of Iraq. With considering lizards fauna, we collected 400 lizard specimens that classified into 18 species, 11 genera and five families, were distributed throughout central and southern Iraq and their zoogeographical affinities about: 44.44% Palearctic, 33.33% Arabian and 22.22% Saharo-Sindian.

Keywords: Iraqi Lizards Fauna, Zoogeography, Central and Southern Iraq.

INTRODUCTION

The herpetofauna of Iraq is the least known compared to that of the surrounding countries. Most previous studies were based on short-term investigations and restricted to limited parts of Iraq. Some basic collecting has been carried out and check-lists of species are available (e.g., Boulenger, 1920; Schmidt, 1939; Allouse, 1955a; Khalaf, 1959; Nader and Jawdat, 1976). The Biological Research Center collected and studied reptiles, and published a monograph on the Gekkonidae of Iraq, but few other studies have been undertaken, and the status, distribution and habits of most species are poorly known (Scott, 1995). The present study tried to provide an updated list of lizards that recorded from Iraq including notes on the zoogeographical affinities of the taxa (Table 1).

An ecozone is the broadest biogeographic division of the Earth land surface, based on distributional patterns of terrestrial organisms. Ecozones delineate large areas of the Earth surface with organisms that have been evolving in relative isolation over long periods of time, separated from one another by geographic features, such as ocean, broad deserts, or high mountain ranges that constitute barriers to migration. As such, ecozone designations are used to indicate general groupings of organisms based on their shared biogeography. Eight ecozones according to the World Wildlife Fund (WWF, 2006; 2014): Nearctic, Palearctic, Afrotropic, Indomalaya, Australasia, Neotropical, Oceania, and Antractic. The Palearctic, physically is the largest of the eight ecozones that constituting the Earth’s surface, it includes the terrestrial ecoregion of Europe, Asia, north of the Himalaya foothills, northern Africa, and the northern and central parts of the Arabian Peninsula. The Palearctic realm consists of five smaller subregions: the European Siberian; the Mediterranean Basin; the Sahara and Arabian Deserts; Western and Central Asian; and China and Japan. Two major rivers in the subregion Western Asia of the Palaeartic are the Tigris, rising in the Taurus Mountains of eastern Turkey and the Euphrates, rising in the mountains of Anatolia. Between these rivers is an ancient area called Mesopotamia, which was also known as the Fertile Crescent. The two rivers join together near Al Qurna in southern Iraq and flow to the Persian Gulf (Eric et al., 1995; Schultz, 2002).
BIOGEOGRAPHY OF IRAQ

Iraq is a country in Southwestern Asia that borders Turkey to the north, Iran to the east, Kuwait to the southeast, Saudi Arabia to the southwest, Jordan to the west, and Syria to the northwest. Iraq has a narrow section of coastline measuring 58 km on the northern Persian Gulf and its territory encompasses the Mesopotamian Alluvial Plain, the northwestern end of the Zagros mountain range, and the eastern part of the Syrian Desert. Two major rivers, the Tigris and Euphrates, run south through the center of Iraq and flow into the Shatt al-Arab near the Persian Gulf. These Rivers provide Iraq with significant amounts of fertile land (Malinowski, 2002; Al-Lami, 2012; Buchman et al., 2011).

Iraq has two marked seasons, a dry and intensely hot summer and a relatively cold, wet winter, with spring and autumn as short transitional periods between the two. The climate is a typical semi-arid continental type, chiefly characterized by wide diurnal and annual ranges in temperature. The maximum recorded temperature is 50°C, while temperatures of 45°C are not unusual occurrences in June, July, and August. The minimum recorded temperature is −11°C in January. The diurnal range of

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Locality</th>
<th>Zoogeographical affinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gekkonidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyrtopodion scabrum (Heyden, 1827)</td>
<td>Babylon, Al-Najaf, Al-Qadissiya, Wasit, Missan, Dhi-Qar, Al-Muthana, Al-Basra</td>
<td>Arabian</td>
</tr>
<tr>
<td>Hemidactylus flaviviridis Ruppel, 1840 (RZUM GH 11.3-22); N = 20</td>
<td>Babylon, Al-Najaf, Al-Qadissiya, Wasit, Missan, Dhi-Qar, Al-Muthana, Al-Basra</td>
<td>Paleartic</td>
</tr>
<tr>
<td>Hemidactylus turcicus (Linnaeus, 1758) (RZUM GH 12.1); N = 1</td>
<td>Al-Najaf</td>
<td>Paleartic</td>
</tr>
<tr>
<td>Hemidactylus persicus Anderson, 1872 (RZUM GH 10.4-7); N = 4</td>
<td>Babylon, Al-Nagaf, Al-Basra</td>
<td>Paleartic</td>
</tr>
<tr>
<td>Stenodactylus doriae (Blanford, 1872) (RZUM SS 10.1-24); N = 24</td>
<td>Babylon</td>
<td>Arabian</td>
</tr>
<tr>
<td>Stenodactylus affinis (Murray, 1884) (RZUM SS 20.1-16); N = 16</td>
<td>Al-Najaf, Dhi-Qar</td>
<td>Arabian</td>
</tr>
<tr>
<td>Lacertidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acanthodactylus orientalis Angel, 1936 (RZUM LA. 852-853); N = 2</td>
<td>Dhi-Qar</td>
<td>Arabian</td>
</tr>
<tr>
<td>Acanthodactylus robustus Werner, 1929 (RZUM LA. 854-855); N = 2</td>
<td>Dhi-Qar</td>
<td>Arabian</td>
</tr>
<tr>
<td>Acanthodactylus grandis Haas, 1957(RZUM 856); N = 1</td>
<td>Dhi-Qar</td>
<td>Arabian</td>
</tr>
<tr>
<td>Acanthodactylus scutellatus Boulenger, 1909 (RZUM LA. 857-873); N = 17</td>
<td>Al-Muthana</td>
<td>Saharo-Sindian</td>
</tr>
<tr>
<td>Ophisops elegans elegans Menetries, 1832 (RZUM LO 10.277-346); N = 70</td>
<td>Babylon, Al-Najaf, Al-Qadissiya Al-Basra</td>
<td>Paleartic</td>
</tr>
<tr>
<td>Scincidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trachylepis vittata (Olivier, 1804) (RZUM SM 12.41-49); N = 9</td>
<td>Babylon</td>
<td>Saharo-Sindian (Arabian)</td>
</tr>
<tr>
<td>Trachylepis septemtaeniata (Reuss, 1834) (RZUM SM 11.17-62); N = 46</td>
<td>Babylon, Al-Najaf, Dhi-Qar, Al-Qadissiya, Al-Muthana, Al-Basra</td>
<td>Paleartic</td>
</tr>
<tr>
<td>Ablepharus pannonicus Fitzinger, 1823 (RUZM SA 20.73-77, 79, 81-84, 109-121); N = 23</td>
<td>Babylon, Al-Basra</td>
<td>Paleartic</td>
</tr>
<tr>
<td>Agamidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phrynocephalus maculatus maculatus Anderson, 1872(RZUM AP 10.16-17); N = 2</td>
<td>Al-Najaf</td>
<td>Paleartic</td>
</tr>
<tr>
<td>Trapelus ruderatus ruderatus (Blanford, 1881) (RZUM AT 12.5-51); N = 47</td>
<td>Al-Najaf, Karbala, Dhi-Qar, Al-Basra</td>
<td>Paleartic</td>
</tr>
<tr>
<td>Uromastyinae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uromastyx aegyptius Forsscål, 1775 (RZUM UU 1.1-8) + 36 preserved in Iraq); N = 44</td>
<td>Al-Najaf, Karbala, Wasit, Missan, Al-Muthana, Al-Basra</td>
<td>Saharo-Sindian</td>
</tr>
<tr>
<td>Uromastyx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varanidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verrucosus (Daudin, 1803) (RZUM VV 1.1-9); N = 9</td>
<td>Babylon, Al-Najaf, Karbala</td>
<td>Saharo-Sindian</td>
</tr>
</tbody>
</table>
temperature often exceeds 15 – 20°C, with daily temper-
atures generally ranging from 20 to 40°C in summer and
from 5 to 15°C in winter. The relative humidity is usually
very low, especially in summer. The average annual rain-
fall ranges from about 100 mm in the south to 300 mm on
the northern plains and 1000 mm in the mountains, but
there are wide variations between years.

According to (Malinowski, 2002; Ministry of Envi-
ronment, 2010; Buchman et al., 2011), Iraq can be classi-
fied basically into four general geographical regions that
hold relatively different geographical, climate, and habi-
tat landscape regions (Fig. 1).

1. Northern landscape, habitat is the highlands,
mountainous areas that exist mainly in the northern and
northeastern parts of the country. It includes scrub and
woodlands in the mountains and foothills; inland pre-
dominantly cliffs and rocky slopes; cliffs, and boulders.
In general, the area features a wide array of forest layers
where more light and heat can penetrate to lower canopy
forest plants. Oak trees are a major component of this
landscape in Iraq.

2. Main landscape habitat in Iraq is the undulated
and hilly landscape habitat that is considered as a transi-
tional graduation between the upper habitat region (the
mountains) and the next one (the desert areas). It is lo-
eated at the northern parts of Middle Iraq and the range
continues to the eastern parts of the country.

3. The desert habitat landscape represents the major-
ity of the area of Iraq, and extends mainly along the west-
er parts of Iraq. However, there are some deserts above
the area between the rivers Tigris and Euphrates, and
above the areas to the east of the Tigris. This habitat har-
bors a wide spectrum of flora and fauna that is adapted to
the extremely dry and hot conditions in Iraq, in addition
to the shortage of the precipitation especially over the
current decades.

4. The Mesopotamian marshlands and the alluvial
plain: this landscape exists across the middle and eastern
parts of southern Iraq. This landscape is characterized of
being vast but plain areas that hold scattered waterbodies,
either permanent or temporary, especially at the southern
parts of this region where the marshes of Lower Mesopo-
tamia are.

There are five terrestrial biomes found in Palearctic
realm of Iraq: Temperate broadleaf and mixed forests;
Temperate grasslands, Savanas and shrublands; Flooded
grasslands and Savannas; Mediterranean forests, wood-
lands and scrub; Deserts and xeric shrublands. Iraq in-
cludes eleven main terrestrial ecoregions (Fig. 2), some
of which can be classified as a key ecoregion that covers
larger areas of the country, we excluded the ecoregions
that are of very weak influence in the Iraqi habitats, and
there is no large representation of the elements character-
zizing these ecoregions in Iraq and focusing only on that
kinds of ecoregions that can be found on ground, and this
is based on the existing information (Guest, 1968;
Malinowski, 2002). These ecoregions are:

1) Tigris – Euphrates alluvial salt marsh;
2) Arabian Desert and East Sahara-Arabian xeric
shrublands;
3) Mesopotamian shrub desert;
4) Middle East steppe;
5) Eastern Mediterranean conifer-sclerophyllous-
broadleaf forest;
6) Red Sea Nubo-Sindian tropical desert and semi-desert;
7) South Iran Nubo-Sindian desert and semi-desert;
8) Gulf desert and semi-desert;
9) Zagros Mountains forest steppe.

The Freshwater and marine ecoregions of the world are also represented in Iraq including three different freshwater ecoregions (Arabian Interior, Lower Tigris and Euphrates, Upper Tigris and Euphrates), and one marine ecoregion (Persian Gulf), which is part of the Western Indo-Pacific Realm. The presence of these ecozones resulted in a considerable heterogeneity of the herpetofauna of Iraq. The complex mosaic of high mountains, steep slopes and desert has led to the formation of narrow borders or overlap between individual ecozones and causes mixing of floral and faunal elements with different biogeographical affinities in individual localities (Amr and Garstecki, 2001).

The peculiar bio-geographical situation of the lower Mesopotamia Marshlands provides a kind of bridge between the African region (the so-called “Arabic region of the African plate”) and Eurasian region (e.g., through the Miocene-Pliocene-Pleistocene fusion of Angara with Paleoeurope). This situation explains the presence of many endemic species in the Iraqi territory as well as the high ecological value of the lower Mesopotamia wetlands, both at regional and international level (Scott, 1995; Nicholson and Clark, 2002; Evans, 2004).

Within these ecozones there are apparent declines and extinction of herpetofauna at a local community level creating a requirement for knowledge of distribution and presence data. The causes of these declines may include habitat loss and degradation, unsustainable use, invasive species, environmental pollution, disease and global climate change (Sindaco et al., 1995; Disi et al., 1999). Habitat loss appears to be the most serious threat to the herpetofauna of Iraq. A variety of herpetological surveys and studies have been conducted in neighboring countries on species that occur in Iraq.

Family Agamidae

Phrynocephalus maculatus maculatus Anderson, 1872. Type locality: Doha Dhalum, Saudi Arabia. It distributes from southern Europe and Southwest Asia (including the Arabian Peninsula and northern India) through Central and Middle Asia to East Asia (northern China and Mongolia). It is listed for Iraq by (Smith, 1935; Khalaf, 1959 and Wermuth, 1967; Leviton et al., 1992 Anderson, 1999).

Trapelus ruderatus ruderatus (Blanford, 1881). Type locality: Persia and northern Arabia. Essentially a species of the Iranian Plateau, northeastern Jordan. These animals are most often seen in open stony places, and on rocky alluvium in overgrazed Artemisia steppe (Leviton et al., 1992; Anderson, 1999; Rastegar-Pouyani, 2000; Rastegar-Pouyani et al., 2007).

Uromastyx aegyptius Forscål, 1775. It distributes throughout North Africa (from Algeria through the Sahara to northern Egypt); southwest Asia (Israel, Sinai, Peninsula, northern Saudi Arabia and along Persian Gulf coast, Iraq, Kuwait, southeastern Iran) (Leviton et al., 1992; Moody, 1987; Anderson, 1999).

Family Gekkonidae

Hemidactylus flaviviridis Ruppel, 1840. Type locality: Insel Massaaua [= Massawa, Somalia]. Wide ranging in the Paleartic region (always in association with man) from the northeast African and Arabian shores of the red sea and around the coasts of Arabia (Iraq, Bahrain) and coastal southern Iran, across Pakistan, eastern Afghanistan and northern India to West Bengal and south to the vicinity of Bombay (Leviton et al., 1992; Khan and Assung, 2002; Carranza and Arnold, 2012).

Hemidactylus turcicus (Linnaeus, 1758). (Type locality: in Oriente [restricted to Asiatic Turkey by K. Schmidt, 1953]). It extends from Morocco to Egypt and south through Somalia to northern Kenya; the coastal areas of the Mediterranean and Red Seas, through Southwest Asia (Arabian Peninsula and Iraq) to Sind. They have been collected primarily in port towns of the Persian Gulf in Iran, although there are scattered inland records as it also the case in Turkey, Jordan, and Iraq, but all these localities lie along trade routes (Leviton et al., 1992; Anderson, 1999; Khan and Assung, 2002; Carranza and Arnold, 2012).

Hemidactylus persicus Anderson, 1872. Type locality: Iran, no exact locality given, probably Bushire, fide, Blanford, 1876, Shiraz, fide M, Smith, 1935. It distributes through Coastal eastern Arabia North to southern Iran and Iraq, East to Sind and Waziristan, Pakistan, on the rocky hills that are almost completely denuded of vegetation and the seasonal streams long since dry, although some water remains in sinkholes and small caverns in gypsum formations (Leviton et al., 1992; Anderson, 1999; Vyas et al., 2006; Carranza and Arnold, 2012).

Cyrtopodion scabrum (Heyden, 1827). Type locality: near Tor, Sinai Peninsula, Egypt, and Abyssinian Coast. It distributes through the Countries of the eastern Mediterranean (Egypt, the Balkans) east through Southwest Asia across the North Arabian Desert, through Pakistan to northern India and the flanks of the Himalayas. North to the southern republics of Central Asia (Leviton et al., 1992; Anderson, 1999).
Stenodactylus affinis (Murray, 1884). Type locality: Tanjistan (just south of Bushire), Iran. The specimens recorded by Schmidt (1955) were collected under stones in a cultivated field, and another specimens were collected at night on unpaved road running through flat terrain of salty alluvium. This species known only from southeastern Khuzestan and southern Fars Provinces, Iran, southeastern and central Iraq (Afrasiab, 1989; Leviton et al., 1992; Anderson, 1999; Fujita and Papenfuss, 2011). Stenodactylus dorrie Blanford, 1874. Type locality: one [day] march from Bandar Abbas on road to Karman, Iran. Widespread in the Arabian Peninsula, Southern Israel, north to Syria, Jordan and Iraq. The coastal plain of Fars and Kerman Provinces and the lower Mesopotamian Plain in Khuzestan, Iran (Leviton et al., 1992; Anderson, 1999; Fujita and Papenfuss, 2011).

Family Lacertidae

Ophisops elegans elegans Menestries, 1832. Type locality: vicinity of Baku, Caucasus, USSR. The variously differentiated populations extend from Bosphorus through Southwest Asia through Iran, South to the Sinai Peninsula and Red Sea coast of northern Egypt, Jordan, Iraq, and north to Transcaucasian USSR (Khalaf, 1959; Leviton et al., 1992; Anderson, 1999).

Acanthodactylus orientalis Angel, 1936. Type locality: syntypes from Palmyre, Tall Abiad, Ain Zahra, Deir ez Zor). Acanthodactylus tristrami orientalis K. Schmidt. 1939. Type locality: Haditha, Iraq). It distributed throughout Western and central Iraq, eastern Syria (Khalaf, 1959; Leviton et al., 1992).

Family Scincidae

Trachylepis vittata (Olivier, 1804). Type locality: sands of Rosetta [= Rashid], Egypt. It extends throughout Mediterranean coast of North Africa, from Algeria through Egypt. Cyprus and Rhodes; Turkey, Lebanon, Israel, Syria, Jordan, Iraq, and western Iran (Leviton et al., 1992; Anderson, 1999; Rastegar-Pouyani and Fattahi, 2014).

Trachylepis septemtaeniata (Reuss, 1834). Type locality: Massawa, Eritrea, Ethiopia, which until 2003 (Mausfeld and Schmitz, 2003) was considered as subspecies of T. aurata. It extends throughout Iraq (T. aurata in the north and T. septemtaeniata at the lower elevations of the Tigris – Euphrates Valley. Also it found in northern and southern Iran, northeastern Saudi Arabia (Al Hasa south to Hofuf), Bahrain, northern Oman, coastal Ethiopia (Massawa), southern regions of the Armenia, Nakhichevan, southern Turkmen, and Uzbekistan.

Ablepharus pannonicus Fitzinger, 1823. Type locality: Bussoera [= Basra], Iraq. It occurs in Southeastern Iraq, Kuwait, northern and western Iran, Turkestan to northwest India, northern Oman, southwestern Saudi Arabia, northern Yemen (Leviton, 1992; Anderson, 1999).

Family Varanidae

Varanus griseus griseus (Daudin, 1803). Type locality: Egypt. Widespread in North Africa and southwestern Asia, including the Arabian Peninsula. The subspecies V. g. griseus is the lowland form ranging across the Arabian Desert, Iraq, Jordan, Lebanon, and North Africa.

Distributional Pattern of Collected Lizards in Southwest Asia

The genera Ablepharus and Cyrtopodion have primary diversity in the elevated region stretching from western Turkey to the Himalayas. Uromastyx, Stenodactylus, Acanthodactylus are genera of the low deserts stretching across North Africa, Arabia, and into Pakistan. Phrynocephalus is equally central Asian and arid central Iranian Plateau in their distribution and diversity. Trachylepis and Ophisops have their greatest diversity in the southern lowlands of Southwest Asia, yet each has one or more species which are widely distributed through the uplands and even into Central Asia. Ophisops elegans and Varanus griseus are the most widely naturally distributed lizard in the world, having a range through the entire Palearctic desert region. The following genera are either Holarctic or pan-tropical, some of them discontinuously distributed: Hemidactylus and Trachylepis (Leviton et al., 1992; Anderson, 1999).
Relationships of the Collected Lizards to Neighboring Areas

Iraq shares the following species with adjacent regions (Fig. 3):

Turkey: Ablepharus pannonicus, Hemidactylus turcicus, Trachelus ruderatus, Ophisops elegans, Trachylepis vittata, T. septentraeniata, and Varanus griseus (Leviton et al., 1992; Anderson, 1999; Rastegar-Pouyani and Fat tahi, 2014).

Iran: Trachelus ruderatus, Uromastyx aegyptius, Cyrtopodion scabrum, Hemidactylus turcicus, H. persicus, H. flavivirdis, Stenodactylus affinis, S. dorae, Acanthodactylus grandis, Ophisops elegans, Ablepharus pannonicus, Trachylepis vittata, and Varanus griseus (Leviton et al., 1992; Schamnakov et al., 1993; Anderson, 1999; Durmus et al., 2014).

Syria: Trachelus ruderatus ruderatus, Uromastyx aegypti, Cyrtopodion scabrum, Hemidactylus turcicus, Acanthodactylus grandis, A. scutellatus hardyi, A. robustus, A. orientalis, Trachylepis vittata, Ophisops elegans, and Varanus griseus (Leviton et al., 1992; Disi and Böhme, 1996; Martens, 1997; Anderson, 1999; Amr et al., 2007).

CHECKLIST OF LIZARDS FAUNA IN IRAQ

Boulenger, 1920; Schmidt, 1939; Khalaf, 1959; Reed and Marx, 1959; Nader and Jawdat, 1976; Haas and Werner, 1969; Afrasiab, 1987; Leviton et al., 1992; Afrasiab and Mohammad, 2009; Mohammad et al., 2005; Lahony et al., 2013; Mohammad et al., 2014.

Family Gekkonidae

Genus Hemidactylus Oken, 1817

- H. turcicus (Linnaeus, 1758); Baghdad.
- H. flavivirdis Ruppell, 1840; Baghdad, Basra, and Tall Asmar.

Genus Gymnodactylus (Cyrtpodion) Fitzinger, 1843

Cyrtpodion scabrum (Heyden, 1827); Aqra, Baghdad, Diyala, Amara [Hafayya], Basra, and An Nasiriya.

Genus Phrynchocephalus Kaup, 1825

- P. maculates Anderson, 1872.
- P. arabicus J. Anderson, 1894; southern Iraq: in the vicinity of Basra.

Genus Uromastyx Merrem, 1820

- U. aegyptius Forskal, 1775; Baghdad and Rutba.
- U. aegyptius microlepis (Blanford, 1874) (U. microlepis Blanford); southeastern Iraq: Basra and Fao.
- U. loricatus (Blanford, 1874). Apparently confined to the Mesopotamian Plain and Zagros foothills of Iraq; 80 km west of Baghdad.

Family Anguidae

Genus Ophisaurus Daudin, 1803

- O. apodus (Pallas, 1775); foothills of the Zagros in Iraq.
Fig. 3. Map of Iraq showing the localities from which materials were collected or observed. 1. Ain-Tamor District, Holy Karbala’a Province: 32°33’56.52” N 43°29’25.89’ E; 2, Al-Razzaza lake, Holy Karbala’a Province: 32°41’ N 43°40’ E; 3, Al-Kafeel village, Kerbala District, Holy Karbala’a Province: 32°32’53.6’’ N 44°5’39.4” E; 4, Al-Wadi (Cemetry) in Karbala’a District, Holy Karbala’a Province: 32°33’4.44” N 44°4’24.12” E; 5, Al-Ubaid village, Al-Qasim subdistrict, Hashimiya District, Babylon Province: 32°13’43.74” N 44°33’54.78” E; 6, Al-Showmali subdistrict, Khagan village, Hashimiya District, Babylon Province: 32°22’00.3’’ N 44°46’07.4” E; 7, Al-Hilla city, Hilla District, Babylon Province: 32°28’43.2” N 44°24’59.2” E; 8, Al-Naby Ayub village, Hilla District, Babylon Province: 32°20’46.02’’ N 44°23’51.78” E; 9, Al-Nikhealah village, Hilla District, Babylon Province: 32°25’46.56’’ N 44°29’54.06” E; 10, Abi-Ghraaq subdistrict, Hilla District, Babylon Province: 32°32’0.96” N 44°20’46.92” E; 11, Ibraheem Al-Khaleel village Hilla District, Babylon Province: 32°23’37.44” N 44°20’47.58” E; 12, Bahr Al-Najaf, Najaf district, Holy Al-Najaf Province: 31°52’30.5” N 44°15’47.2” E; 13, Madhluum village, Bahr Al-Najaf, Al-Najaf District, Holy Al-Najaf Province: 31°53’37.6” N 44°16’25.4” E; 14, Al-Jayir village, Al-Mushkhhab District, Holy Al-Najaf Province: 31°50’28.4” N 44°30’13.7” E; 15, Al-Kufa District, Holy Al-Najaf Province: 32°8’06.7” N 44°22’17.3” E; 16, Al-Abbastiya county, Al-Kufa District, Holy Al-Najaf Province: 32°4’50’’ N 44°26’46.3’’ E; 17, Al-Qizwiniya, Al-Abbastiya county, Al-Kufa District, Holy Al-Najaf Province: 32°4’50.0” N 44°26’46.5” E; 18, Um Groom called area Al-Najaf District, Holy Al-Najaf Province: 3°46’17.3” N 44°13’37.8” E; 19, Diwaniya District, Al-Qadisiya Province: 31°56’28.8” N 44°54’12.6” E; 20, Al-Shabaka, Al-Najaf District, Holy Al-Najaf Province: 3°48’19.36” N 43°40’5.87” E; 21, Hamza District, Al-Qadisiya province: 3°43’42.1” N 44°57’35.6” E; 22, Al-Shamiya District, Qadisiya Province: 31°58’17.1”N, 44°36’36.4” E; 23, Al-Rumaitha, Al-Muthanna Province: 31°30’56.1” N 45°12’17.6” E; 25, Al-Salman District, Al-Muthanna Province: 30°33’8.96” N 44°33’50.65” E; 26, Al-Bdoor, Fahad Bridge-Al-Samawa District, Al-Muthanna Province: 31°8’50.8” N 45°59’09.8” E; 27, Al-Sabaa field-Suq Al-Shoyokh, Dhi Qar Province: 30°37’56.5’’ N 46°41’16.1” E; 28, Albu-Jumaa village, Said Dakheel subdistrict, Dhi-Qar Province: 3°10’52.4” N 46°19’44.9” E; 24, Um Enage, Al-Chibayish, Dhi-Qar Province: 30°37’56.5’’ N 46°41’16.1” E; 29, Albu-Youif village, Said Dakheel Subdistrict, Nassriya, Dhi Qar Province: 31°9’29.3’’ N 46°17’23.5” E; 30, Albuhbail village, Said Dakheel Subdistrict, Nassriya District, Dhi Qar Province: 31°10’40.1” N 46°19’39.2” E; 31, Albedhan villages, Said dakheel county, Dhi-Qar Province: 3°5’54.3’’ N 46°20’13.8” E; 32, Al-Mutanazh/ Nassriya District, Dhi Qar Province: 31°2’52” N 46°14’01.4” E; 33, Al-Dalmaj, Wasit Province: 32°7’55.3” N 45°37’38” E; 34, Al-Kahla subdistrict, Amara District, Maysan Province: 31°35’17.59” N 47°25’7.24” E; 35, Al-Mutia, Al-Basrah, Al-Basra Province: 30°32’35” N 47°49’26.6” E; 36, Al-Jubaila, Al-Basrah, Al-Basra Province: 30°32’27.7” N 47°48’56.5” E; 37, Al-Salhiya, Kut-elguwam-Shatt Al-Arab, Al-Basra Province: 30°30’33.6” N 47°53’12” E; 38, Khor-Al-Zubair, Al-Zubair District, Basra Province: 30°18’51.4” N 47°44’50.4” E.
Family Varanidae
Genus Varanus Merrem, 1820

V. griseus griseus (Daudin, 1803); Baiji, NSSariye, and Mesopotamia.
V. griseus caspius (Eichwald, 1831); Hawraman Lowest one, Kurdistan Province North East of Iraq.

Family Lacertidae
Genus Acanthodactylus Fitzinger, 1834
A. boskianus (Daudin, 1802) (A. b. asper Audouin); Basra, Euphrates, Ramadieh, Haditha, and Rutba.
A. t. euphratica Boulenger; Tall Afar.
A. grandis Boulenger, 1909 (A. fraseri Boulenger).
A. orientalis Angel, 1936 (A. t. orientalis) [A. tristrami (Gunther) (A. t. iracensis Schmidt)]; western and central Iraq, Papworths Area: south of Rutba, Haditha.
A. scutellatus hardyi Haas, 1957; southern Iraq: Basra.
A. robustus F. Werner, 1929; southwestern Iraq: Jebel Enaze.
A. ophoeodurus Arnold, 1980.
A. schmidtii Haas, 1957; southern and western Iraq.

Genus Eremias Fitzinger, 1834
E. persica Blanford, 1875 (E. velox persica); doubtfully occurs in Iraq.

Genus Ophisops Menetries, 1832
O. elegans elegans Menetries, 1832; Amara, Basra, Baghdad, Balad Sinjar, Diana, Sulaimaniya, and Tall Afar.
O. elegans ehenbergii Werner, 1938; Ramadieh and Euphrates.
O. blanfordi Schmidt, 1939; type from Halfaya, 32 km east of Amara.

Genus Apathya
A. cappodocica urmiana Lantz and Suchow, Aqra.

Genus Timon Tschudi, 1836
Timon kurdistanicus (Suchow, 1936).

Genus Mesalina Gray, 1838
M. brevirostris Blanford, 1874; Papworths Area and Rutba, Ramadieh.
M. guttulata guttulata (Lichtenstein, 1823); Haditha.

Family Scincidae
Genus Trachylepis (Mahuya Fitzinger, 1826)
M. vittata Olivier, 1804; Amara and Mesopotamia.
M. aurata aurata Linnaeus, 1758; Tall Afar.
M. aurata septemtaeniata Reuss, 1834; Amara, Basra, Ramadieh, Euphrates, Baghdad, Diyala, and Halfaya.

Genus Ablepharus Fitzinger, 1823
A. kitaebelli (Bibron and Bory, 1833); Iraq.
A. pannonicus Fitzinger, 1823 (A. brandii festae Peracca); southeastern Iraq: Baghdad, Suk-esh-Shuyek, Euphrates, Amara, Basra.

Genus Eumeces Wiegmann, 1834
E. schneiderii princeps (Eichwald, 1839); Mesopotamia: Balad Sinjar, Rutba and Tall Afar.

Genus Scincus Laurenti, 1768
S. scincus contirostris Blanford, 1881; Baghdad.

REFERENCES

Malinowski J. (2002), Iraq Geography, U.S. Military Academy West Point, West Point, NJ.

