Microsatellite instability in parthenogenetic rock lizard Darevskia unisexualis

T.N. BADAeva; V.I. KORCHAGIN; O.N. TOKARSKAYA & A.P. RYskov

Institute of Gene Biology RA S, Vavilov str. 34/5, Moscow, Russia, 119334, Russia; Badaeva_r@mail.ru

Caucasian rock lizards of the genus Darevskia are truly parthenogenetic, all-female, diploid species derived by the hybridization of different bisexual species, and characterized by a certain degree of clonal diversity.

Recently a polymorphic locus containing a (GATA)n microsatellite (designated Du281) was isolated from a genomic library of D. unisexualis. PCR analysis revealed 6 allelic variants of Du 281 in populations of D. unisexualis.

To understand the molecular mechanisms underlying allelic variability of this locus we analyzed parthenogenetic families of D. unisexualis using a set of primers found for Du281. In total we screened DNA samples of 217 lizards representing 49 families. In 4 families all offspring were mutant for Du281 locus. The observed changes were caused by deletion/insertion of one monomer, which fits well the stepwise mutation model of microsatellites.

Our results directly show that microsatellite mutations make a significant contribution to the population variability in parthenogenetic lizards of the genus Darevskia.