Canarian lizards (genus *Gallotia*, Arnold, 1973) are in general omnivorous, eating several plant species and some insects (Molina-Borja, 1991; Rodríguez et al., 2008). Juveniles may consume more insects, but adults are mainly vegetarians (Valido & Nogales, 1994). Among the consumed plants are “salado” (*Schizogine cereum*), “guaidil” (*Convolvulus floridus*), “lavanda” (*Lavandula* sp.), and petals, flowers and fruits of “tunera” (*Opuntia dilenii*) (Molina-Borja, 1991; Rodríguez et al., 2008). Among the consumed invertebrates are coleopteran, aracnids, formicids and hymenopterans (Rodríguez et al., 2008).

We describe here, for the first time, the feeding of *Gallotia caesaris* specimens on feather parasites of *Pandion haliaetus* nesting in El Hierro (Canary Islands). In that island, *P. haliaetus* reproduction has been reinforced by adding previously built nests on several cliff sites (Trujillo & Rodríguez, 2007). During several periods in which *P. haliaetus* individuals were filmed (by the first author) while they were in the nest (located at the shore of Mar de las Calmas), an undescribed behavior by *G. caesaris caesaris* lizards could be observed. It consisted of several lizards climbing to dorsal feathers of *P. haliaetus* (adult and chick, Figures 1a and b) and performing there typical feeding movements directing their snouts to the feathers (Pedro F. Acosta, unpublished video film). When observed with more detail, the insects eaten by the lizards on *P. haliaetus* back feathers were identified as louse flies (Diptera, Hippoboscidae). These flies are ectoparasites of mammals and birds (Tella et al., 2000) and different species like *Ornithomya avicularia*, *Pseudolynchia canariensis*, *Icosta americana* and *Ornithomya anchineuria* have been described as parasites of raptors (Samour, 2016); another species, *Olfersia fumipennis*, Sahlberg, 1886, has been cited on *P. haliaetus* (Pospischil, 2015). It was impossible to capture any of the louse flies from *P. haliaetus* (not allowed) so we do not know the species.

Commensalism on rests from prey brought by Eleonora’s falcon has been cited in lacertids from Mediterranean islands (Delaugerre et al., 2012) and from gull’s prey in *Gallotia simonyi* on Roque Chico de Salmor (Siverio & Felipe, 2009). On the other hand, several reports have been published on lizards eating bird ectoparasites, including flies...
from different families (Kammerer, 1925; Duffy, 1991; Polis & Hurd, 1995). Our observation pose some interesting questions: first of all, this behaviour can be present only in local populations of *G. caesaris caesaris* living close to *P. haliaetus* nests. Secondly, it must contribute to *P. haliaetus* (adults and new-borns) health eliminating or reducing louse flies parasites; these parasites have been shown to affect body condition in other bird species (Senar et al., 1994; Clayton et al., 2010). Moreover, lizards on their part obtain, at least temporarily while birds are on nests, an additional food item supplying animal proteins; therefore, this relationship could be considered an example of mutualism, sometimes named as cleaning symbiosis (McFarland & Reeder, 1974). Nevertheless, this relationship could be more complicated if louse flies endoparasites (Baker, 1967) could also infect lizards (see Johnson et al., 2010 for a revision of the ecological importance of parasites as preys).

REFERENCES

Rodríguez, A., Nogales, M., Rumeu, B. & Rodríguez, B. 2008. Temporal and spatial variation in the diet of the endemic lizards *Gallotia galloti* in an insular Mediterranean scr-

