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ABSTRACT Variation in environmental factors plays a central role on organisms’ physiological
changes. However, the physiological response to predation risk has rarely been investigated in
reptiles. Chemical senses are important for intraspecific communication in squamate reptiles. In
male lizards Iberolacerta cyreni the maintenance of relative proportions of lipids in femoral gland
secretions is costly, which may ensure honest signalling of quality. We hypothesized that increased
predation risk should compromise the maintenance of such lipid proportions, as both a fear response
and escaping behavior can have physiological consequences. We simulated predator attacks and
found that relative proportions of lipids in femoral gland secretions changed in disturbed lizards but
not in control ones. Thus, predator–prey interactions may modulate relative concentrations of
chemicals in scents of lizards. Potential consequences of this effect on intraspecific chemical
communication are suggested. J. Exp. Zool. 309A:427–433, 2008. r 2008 Wiley-Liss, Inc.
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There are many biotic and abiotic factors
inducing phenotypic plasticity in organisms to
cope with potential deleterious effects of unpre-
dictable environmental variation (Agrawal, 2001).
Stressful situations such as starvation, inclement
weather, increased predation pressure or agonistic
interactions can modulate some aspects of the
physiology in birds (Lynn et al., 2003), fish
(Oliveira et al., 2001) and reptiles (Romero and
Wikelski, 2001). These induced physiological re-
sponses may lead to subsequent changes that
encompass from other physiological changes, such
as mobilization of stored energy reserves, to
complex behaviors, such as facultative dispersal
(reviewed in Wingfield et al., ’98; Dufty and
Belthoff, 2001). Predation risk is considered as
one of the most important forces modulating life
history, morphological and behavioral traits
(Agrawal, 2001; Benard, 2004; Martı́n and López,
2004). However, physiological changes in response
to predation risk have rarely been investigated
directly in vertebrates (but see Ylönen et al.,
2006).

In squamate reptiles, chemical senses are im-
portant for intraspecific communication (Halpern,
’92; Mason, ’92; Cooper, ’94; Schwenk, ’95). The

presence and relative concentrations of chemical
compounds vary between individuals (Alberts, ’90;
’93), and can play a variety of functions in
chemical communication (Cooper, 2004; Martı́n
and López, 2006a). It has been shown that
chemical composition of femoral gland secretions
can be seasonally and status-dependent (Alberts
et al., ’92a,b). However, the contribution of
phenotypic plasticity, in its broad sense of envir-
onmentally affected phenotypes, to this variation
induced by biotic factors remains unclear.

The Iberian rock-lizard (Iberolacerta cyreni) is a
small diurnal lacertid lizard found mainly in rocky
habitats of some high mountains of the Iberian
Peninsula. Lizards are active from May–October,
mating in May–June and producing a single clutch
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in July (Elvira and Vigal, ’85). In this species,
scent-marks play an important role as home range
advertisement and spacing behavior (Aragón
et al., 2001a, 2006). Chemicals arising from
femoral gland secretions are involved in social
communication. For instance, male I. cyreni are
able to discriminate between their own femoral
gland secretions and those of familiar and un-
familiar conspecifics (Aragón et al., 2001b). More
specifically, relative concentrations of lipids in
femoral gland secretions may give reliable infor-
mation on adult male traits used in sexual
selection processes by other males (Martı́n and
López, 2007) and by females (López et al., 2006;
Martı́n and López, 2006a,b). Therefore, the varia-
tion of scent-marks’ characteristics should have
important consequences on intraspecific chemical
communication in this species.

In male I. cyreni the maintenance of relative
proportions of lipids in femoral gland secretions,
used to scent mark substrates, may be costly,
which therefore may ensure honest signalling of
male quality (Martı́n and López, 2006b). In
addition, it has been shown that both capture
stress (Moore et al., ’91) and physical activity
(Gleeson and Hancock, 2002) to have physiological
consequences in lizards. Therefore, we simulated
predator attacks to test whether increased preda-
tion risk may constrain the maintenance of lipid
proportions in femoral secretions of male I. cyreni,
and to document, for the first time in reptiles, the
effect of predation risk on chemical signals.

MATERIALS AND METHODS

Study species

Coinciding with the mating season on early
June 2004, we captured by noosing 22 male I.
cyreni at ‘‘Alto del Telégrafo’’ (Guadarrama
mountains, Central Spain) at an elevation
of 1990 m. Relative concentrations of chemicals
in femoral gland secretions of lacertids may vary
between adults and subadults (López and Martı́n,
2005a; Martı́n and López, 2006c). Therefore,
only adult males were captured, as estimated
from their body size (Elvira and Vigal, ’85). We
selected individuals of similar body size (weight:
X7SE ¼ 7:270:2 g; snout-to-vent length (SVL):
X7SE ¼ 73:570:7 mm) and with intact or fully
regenerated tails, because metabolic rate can be
affected by tail loss in lizards (Naya and Bozinovic,
2006). Lizards were individually housed at ‘‘El
Ventorrillo’’ Field Station (Navacerrada, Madrid
Province, Spain) 5 km from the capture site in

outdoor opaque plastic cages (60� 40 cm) contain-
ing a shelter. To prevent interacting effects
between predation risk treatment per se and
feeding rate as a by-product when availability of
food is variable (Pérez-Tris et al., 2004), feeding
was limited to one Tenebrio molitor larvae of
similar size every day. We ensured that all lizards
ate the larvae each day. The same amount of water
was provided for each lizard. In addition, to
standardize potential costs of refuge use during
captivity (Amo et al., 2007a), all individuals had
access to one shelter of similar size and shape. All
lizards were measured and weighed before and
after the experimental manipulation.

Experimental manipulation

To minimize potential effects of captivity stress,
all lizards were acclimated to their home cages
during 2 days before the experimental manipula-
tion. To assess the effect of increased predation
pressure on the composition of femoral gland
secretions, an equal number of males (n 5 11 per
treatment) were randomly assigned to two treat-
ments: ‘‘predation risk’’ treatment and ‘‘control’’
treatment. In the ‘‘predation risk’’ treatment
we simulated predation encounters by human
attacks five times per day separated by 1.5 hr
(09:00–15:00 hr GTM), during 7 days. Each pre-
dation encounter consisted in chasing lizards by
hand tapping in the soil during 30 sec, but no
lizard was actually touched during chases. To
avoid handling effects, chasings were performed in
the lizard’s home cages after gently removing
shelters, which were replaced after trials. Similar
procedures have been recurrently used in other
lizard studies to simulate increased predation
risk in the environment (e.g. Pérez-Tris et al.,
2004; Amo et al., 2007b). Control males were held
under the same conditions but they were not
disturbed. All lizards were returned healthy to
their capture sites.

Chemical analyses of femoral secretions
of males

Femoral gland secretions of males were ex-
tracted before (on the capture date) and 1 day
after the experimental manipulation, by gently
pressing with forceps around the pores. Blank
control vials were treated in the same manner to
examine the presence of potential contaminants
and compare them with the lizard samples.
Secretions were collected in glass vials with
Teflon-lined stoppers (Wilmington, Delaware)
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and stored at �201C until analyses. Samples were
analyzed with a Finnigan-ThermoQuest Trace
2000 gas chromatograph (Austin, Texas) fitted
with a poly (5% diphenyl/95% dimethylsiloxane)
column (Supelco, Equity-5, 30 m length�
0 � 25 mm ID, 0 � 25mm film thickness) and a
Finnigan-ThermoQuest Trace mass spectrometer
as detector. The oven temperature was pro-
grammed at 501C for 10 min, then increased to
2801C at 51C min�1 and kept at 2801C for 30 min.
Identification of compounds was done by compar-
ison of mass spectra in the NIST/EPA/NIH 1998
library and later confirmed with authentic stan-
dards (see López and Martı́n, 2005b; López et al.,
2006 for a more detailed description of analytical
methods and chemical compounds in femoral
secretions of this species).

The relative amount of each component was
determined as the percent of the total ion current
(TIC). Then, we selected the 18 major peaks that
represented 40 � 1% relative peak area (which
together represent 98% of total TIC area) and that
were present in all the individuals to reduce the
number of variables to be used in the statistical
analysis (Dietemann et al., 2003). Other minor
components (TIC area o0.1%) were not found in
every individual, probably owing to difficulties in
detecting trace components in all samples. Thus,
these compounds were not considered in further
tests. However, average frequencies of appearance
of minor components were similar in control and
experimental lizards. The relative areas of the
selected major peaks were restandardized to 100%
and transformed following Aitchison’s formula:
[Zij 5 ln(Yij/g(Yj)], where Zij is the standardized
peak area i for individual j, Yij is the peak area i
for individual j, and g(Yj) is the geometric mean of
all peaks for individual j (Aitchison, ’86; Diete-
mann et al., 2003). The homogeneity of variance of
these variables was tested with Levene’s test, and
Bonferroni’s correction was applied. The trans-
formed areas were used as variables in a principal
component analysis (PCA).

Data analyses

All factors (PCs) obtained from the PCA were
used as potential predictors. To test whether there
were differences in relative proportions of chemi-
cal compounds before and after the experimental
manipulation we use multivariate analysis of
variances (MANOVAs) including all PCs. When a
significant effect was found in the multivariate
analyses we used protected repeated measures

analysis of variances (ANOVAs), with time (before
and after treatment) as a within-subject factor.
For PCs that significantly changed in disturbed
lizards, same test was performed for control
individuals to verify that the effect was not owing
to the progress of the season or captivity. Normal-
ity and homogeneity of variances were verified by
the Kolmogorov–Smirnov test and Levene’s test,
respectively. For the repeated measures models,
sphericity was not checked because all the within-
subjects factors have only two levels and therefore
each variance–covariance matrix is a vector
(Quinn and Keough, 2002).

To test for effects of captivity time, progress of
the season or experimental manipulation on mor-
phometric traits (SVL, body mass and corpulence)
we used univariate one-way ANOVAs. Corpulence
was used as a relative measure of weight and was
estimated by taking the residual score of the linear
regression of the body weight on the SVL.
Unadjusted probabilities are reported, but signifi-
cance was verified using the sequential Bonferroni
adjustment for each family of tests (Chandler, ’95).

RESULTS

Individual morphometric traits

Morphometry did not differ significantly between
control and disturbed males before (SVL:
F1,20 5 0.02, P 5 0.89; body mass: F1,20 5 0.85, P 5

0.36; corpulence: F1,20 5 1.86, P 5 0.18) or after the
treatment execution (SVL: F1,20 5 0.20, P 5 0.65;
body mass: F1,20 5 0.006, P 5 0.93; corpulence:
F1,20 5 0.13, P 5 0.72). Similarly, there were no
significant differences in the change in morpho-
metric traits, estimated as the difference between
each trait before and after the experimental manip-
ulation (SVL difference: F1,20 5 1.03, P 5 0.32; body
mass difference: F1,20 5 2.07, P 5 0.16; corpulence
difference: F1,20 5 2.88, P 5 0.10). No lizard lost its
tail during the experimental procedures.

Variation of chemical proportions in
gland secretions

Eighteen major chemical compounds were iden-
tified in femoral gland secretions (Table 1). PCAs
produced five PCs, which together accounted for
70.11% of the total variance. All PCs had eigenva-
lues higher than 1 (Table 1). There were no
significant differences between lizards in the
‘‘control’’ and ‘‘predation risk’’ treatments before
the beginning of the experimental manipulation
(MANOVA: Wilk’s l5 0.77, F5,16 5 0.90, P 5 0.49).
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In contrast, after the treatment, the relative
proportions of chemicals in secretions of disturbed
lizards were significantly different from control
males (Wilk’s l5 0.47, F5,16 5 3.53, P 5 0.024).
PC-1 scores were significantly higher after
the simulated chasings in disturbed lizards (re-
peated measures ANOVA: F1,10 5 13.61, P 5 0.004;
Fig. 1), whereas there was no significant effect for
control individuals (F1,10 5 0.01, P 5 0.90). Thus,
proportions of two carboxylic acids (hexadecanoic
and octadecanoic acid) decreased, whereas propor-

tions of three steroids (campesterol, sitosterol and
ergosta-5,8-dien-3-ol) increased in disturbed li-
zards. (Fig. 1; Table 1). There were no significant
effects of chasings for the other PCs after
Bonferroni correction (PC-2: F1,10 5 2.38,
P 5 0.15; PC-3: F1,10 5 0.001, P 5 0.97; PC-4:
F1,10 5 2.37, P 5 0.15; PC-5: F1,10 5 6.34, P 5 0.03).

DISCUSSION

Our manipulation induced a change in relative
proportions of chemicals in femoral gland secre-
tions of male lizards, but the treatment was not
strong enough to provoke significant changes in
morphology. In contrast, chasings provoked loss of
body mass in other lacertid species in natural
(Martı́n and López, ’99) and captive conditions
(Pérez-Tris et al., 2004). Interestingly, previous
studies with I. cyreni showed that the level of
predation risk in natural conditions may be either
associated (Amo et al., 2007b) or not (Amo et al.,
2007a) with changes in body mass depending on
season and environmental variables. In our ex-
periment, we held fixed potential sources of
variation in nature that might act additively or
synergistically with simulated predator attacks to
account for an effect on loss of body mass. For
instance, it is known that the growing rate is
asymptotically age-dependent in lacertids (e.g.
Roitberg and Smirina, 2006) and, hence, a lower

TABLE 1. Principal components analysis for relative proportion of chemicals in femoral gland secretions of male lizards

Compound PC-1 PC-2 PC-3 PC-4 PC-5

Dodecanoic acid �0.47 0.64 �0.15 �0.39 �0.02
Hexadecanoic acid �0.77 �0.05 0.07 0.42 �0.14
Octadecenoic acid �0.07 0.20 0.03 �0.79 0.12
Octadecanoic acid �0.76 0.01 0.19 �0.20 0.25
Squalene �0.13 �0.01 0.33 �0.77 0.11
Cholesterol 0.14 0.71 �0.36 �0.11 �0.11
Cholesta-5,7-dien-3-ol �0.24 0.49 �0.25 �0.29 0.20
Ergosta-7,22-dien-3-ol �0.10 0.21 �0.85 0.02 0.13
Ergosterol 0.01 �0.06 �0.86 0.21 �0.04
Stigmasta-5,24(28)-dien-3-ol �0.07 0.75 0.08 0.09 0.06
Campesterol 0.76 �0.02 0.18 0.38 �0.17
Ergosta-5,8-dien-3-ol 0.57 �0.39 0.31 0.01 0.28
Lanost-8-en-3-ol 0.13 0.00 �0.11 0.06 �0.70
2,2-Dimethyl-cholest-8(14)-en-3-ol 0.15 0.20 �0.09 0.48 0.50
Sitosterol 0.66 �0.01 0.19 0.53 �0.13
24-Propylidene-cholest-5-en-3-ol 0.06 0.16 0.28 0.30 �0.70
4,4-Dimethyl-cholesta-5,7-dien-3-ol 0.11 �0.81 0.07 0.29 0.19
Unidentified waxy ester �0.16 �0.69 �0.13 �0.28 �0.06
Eigenvalue 4.54 2.96 2.06 1.72 1.32
% Variance 25.23 16.45 11.48 9.58 7.37

Bold lettering denotes factor loadings higher than 0.5.
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Fig. 1. PC-1 scores (mean7SE) before and after simulated
predator attacks and in control males. PC-1 is extracted from
the factor analyses for relative proportions of chemicals in
femoral gland secretions of male lizards.
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variability in morphometry is expected for older
males. As composition of femoral gland secretions
in lacertids may vary between adults and sub-
adults (López and Martı́n, 2005a; López and
Martı́n, 2006), in our study we only selected adult
males to reduce variation in relative proportions
in chemicals. Therefore, further studies are
necessary to examine whether this variability in
the effect of predation risk on the body mass found
among and within lizard species arises because of
different levels of predation risk in the experi-
mental design, different ranges of age, variation in
food intake or taxonomic differences. Whatever
the key difference between this and previous
studies, our study suggests that the physiological
flexibility (Piersma and Drent, 2003) found here is
not linked with the loss of body mass.

Although explaining the underlying physiologi-
cal mechanism mediating the observed changes is
beyond the scope of the present experiment, at
least two nonexclusive potential mechanisms can
be argued. It is well established that stressful
situations may lead to an increase in circulating
corticosterone in vertebrales (Sapolsky et al.,
2000; Lynn et al., 2003). The observed changes
owing to simulated predation risk might be
induced by the fear stimuli as it has been shown
that handling by humans may provoke a rise in
corticosterone levels in birds (e.g. Silverin et al.,
’97; Silverin and Wingfield, ’98) and reptiles
(lizards: Moore et al., ’91; snakes: Moore et al.,
2000). Glucocorticoids regulate lipid and steroid
metabolism in a variety of vertebrates (Assenma-
cher, ’73; Wade and Schneider, ’92; Bjorntorp,
’96), including poikilothermic vertebrates (Sher-
idan ’94). More specifically, it has been demon-
strated that corticosterone levels produced by
stressful situations are associated with the rapid
change of free fatty acid concentrations (Palokan-
gas and Vihko, ’71; Harris et al., ’94). Thus, the
changes in free fatty acid concentrations in the
current experiment might reflect that increased
predation risk also increased stress levels.

An alternative but nonexclusive potential me-
chanism is that the observed changes might not be
merely owing to the fear stimuli but a product of
increased physical activity per se. For instance, it
has been shown that the metabolic costs asso-
ciated with short and intense activity in the lizard
Dipsosaurus dorsalis are large enough to impact
the energy budget (Hancock et al., 2001). Thus,
the antipredatory response to predator attacks by
means of escaping behavior can have significant
consequences when there is a high predation

pressure in natural conditions. Whatever the type
of mechanism involved, the current experiment
shows that changes in free fatty acid concentra-
tions produced by simulated predation attacks
may also be reflected in gland secretions used as
chemical signals. Further studies will be needed to
determine the trigger of the observed changes.

The fatty acids found in the femoral gland
secretions in this study have already been de-
scribed in previous studies of this species (López
and Martı́n, 2005b) and in other Lacertid species
(López and Martı́n, 2005a,c, 2006; Martı́n and
López, 2006c,d) and also in Iguanid lizards of the
genus Liolaemus (Escobar et al., 2001) and Iguana
(Alberts et al., ’92). Carboxylic acids found in
femoral secretions of I. cyreni range from n-C6 to
n-C22, and their relative concentrations vary
among individuals (López and Martı́n, 2005b).
The variability in chain length of carboxylic acids
in gland secretions should be linked with pher-
omonal volatility (Alberts, ’92). In concordance, it
has been argued for lizard species that the range
of carbon atoms number appropriately matches
with the ambient temperature because the inter-
action of both parameters affects volatility of
scents in the substrate (Escobar et al., 2003;
López and Martı́n, 2005b). However, interpopula-
tional or habitat differences in carboxylic acids
previously reported did not disentangle whether
the origin of this variability is owing to genetic
diversity, phenotypic plasticity or both (Escobar
et al., 2003; Martı́n and López, 2006d). Our results
showed that this variation may be achieved, at
least in part, through physiological flexibility
caused by a biotic factor.

The influence of predation risk on chemical
proportions might have important consequences
in the efficiency of intraspecific chemical commu-
nication of squamate reptiles as previous evidence
supports that lipids are involved in chemical
signalling (e.g. LeMaster and Mason, 2001; López
and Martı́n, 2005c; Martı́n and López, 2006a,b).
For instance, a potential cost related to signalling
male quality may be involved. Previous studies
revealed that relative proportions of lipids in
femoral secretions may be reliable advertisements
of male quality, which females may use to select
mates (López and Martı́n, 2005c; Martı́n and
López, 2006a,b; López et al., 2006). More specifi-
cally linked to our results, relative proportions of
lipids such as hexadecanoic acid are negatively
correlated with fluctuating asymmetry levels of
male I. cyreni (López et al., 2006). A trait that is
used by females in sexual selection processes,
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being scents of symmetric males more attractive to
female I. cyreni (Martı́n and López, 2000). Inter-
estingly, our results showed a decrease in relative
proportions of hexadecanoic acid under simulated
increased predation risk. Thus, it can be argued
that those males that better afford this constraint
induced by stress of predation, would be
more attractive to females. Our results highlight
the need for further studies to examine
the complexity of physiological changes and biotic
interactions, and their fitness consequences,
which would enable us to prevent ecological
perturbations, such as introduction of predators
or human disturbance.
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